Что такое клеточный центр и его функции. Немембранные структуры

Ложножки, жгутики и реснички.

Ложножки , или псевдоподии (от греч. псеудос – ненастоящий, подос – нога) образуются в результате перетекания цитоплазмы. При этом образуются отростки разной формы. Характерны для многих одноклеточных (амебы, фораминиферы, радиолярии и т. п.), лейкоцитов животных. Псевдоподии обеспечивают обволакивание твердых питательных частиц – процесс фагоцитоза .

Реснички и жгутики состоят из микротрубочек из сократительных белков, упорядоченных особым образом. На поперечном срезе имеют на периферии девять двойных микротрубочек, а в центре – две. Покрыты реснички и жгутики плазматической мембраной. Имеют диаметр около 0,25 мкм. Отличаются длиной (реснички короткие, жгутики – длинные) и характером движения (у жгутиков спиральный, у ресничек – мерцательный, волнообразный). Движения ресничек скоординированы.

Встречаются они у одноклеточных организмов, в клетках тканей многоклеточных (жгутик – у сперматозоидов, реснички – в мерцательном эпителии). Функции ресничек и жгутиков: движение одноклеточных организмов, обеспечение пищей (жгутики пищеварительных клеток гидры и т. п.), осязательная и защитная функции (реснички клеток слизистой оболочки и т. п.).

Базальные тельца – особые структуры, углубленные в цитоплазму, которые лежат в основе ресничек и жгутиков. Взаимосвязаны с периферийной частью жгутиков или ресничек и прикреплены к плазматической мембране клетки. В основе каждой реснички лежит одно базальное тельце. Их периферийные пучки (9 микротрубочек) собраны по три. В центральной части они отсутствуют.

Рибосомы

Состоят из двух субъединиц – большой и малой. Химический состав: рибосомальная РНК и белок почти в равных соотношениях, образуют единый рибонуклеопротеидный комплекс. Рибосомы образуются в ядрышке.

Субъединицы под действием определенных ионов (кальция), биологически активных соединений могут разъединяться или соединяться. Большая и малая субъединицы соединяются вне ядра, в местах, где будет синтезироваться белок. Встречаются рибосомы как свободные, так и связанные с мембранами – образуют шероховатую ЭПС. Сначала малая субъединица на мембране ЭПС объединяется с молекулой иРНК, потом объединяется с большой субъединицей.

Количество рибосом зависит от интенсивности процессов синтеза белка.

Функции рибосом

Синтез белка.

Клеточный центр

Имеет или не имеет центриоли . Центриоли – это два взаимно перпендикулярных цилиндра, которые образованы из микротрубочек, упорядоченных определенным образом. Состоят из девяти пучков микротрубочек по три в каждом, расположенных по периферии. По структуре подобны базальным тельцам. Центриоли размещены в участке светлой цитоплазмы. От нее в разные стороны отходят радиально микронити. Нет центриолей в клетках высших растений, некоторых грибов, водорослей и простейших.

Функции центриолей

Принимают участие в образовании веретена деления, ресничек и жгутиков, микротрубочек цитоплазмы. Если отсутствуют, все эти процессы происходят без них. Другие функции окончательно не выяснены.

Включения

Включения – это непостоянные структуры, которые могут появляться и исчезать в процессе жизнедеятельности, преимущественно – запасные вещества. Расположены в цитоплазме, а также встречаются в митохондриях, пластидах, клеточном соке вакуолей растительных клеток. Могут распадаться под действием ферментов на соединения, которые вступают в процессы обмена, роста, цветения, созревания плодов и т. п.

Бывают в жидком состоянии в виде капелек (липиды) или твердом – в виде гранул (крахмал, гликоген и т. п.), кристалликом (соли щавелевой кислоты и т. п.).

Бывают органические и неорганические.

Органические включения

Органические : чаще всего углеводы (крахмал, гликоген), жиры, реже – белки, пигменты. Крахмал, который накапливается в лейкопластах, разрывает мембраны клеток и выходит в цитоплазму, где сохраняется в виде зерен. В клетках растений запасающей ткани могут накапливаться белковые гранулы (бобовые, злаковые), жиры (арахис). Гликоген в виде зерен или волоконец запасается в животных клетках, в клетках грибов. Много белков и липидов запасается в цитоплазме яйцеклеток животных.

Неорганические включения

Неорганические : соли (щавелевокислого натрия, мочевой кислоты и др.). Часто неорганические включения встречаются в виде нерастворимых соединений.

Включения могут возникать в виде структур, выполняющих роль внутриклеточного скелета у некоторых одноклеточных животных. Представляют собой конструкции определенной формы без поверхностной мембраны. Например, у радиолярий есть шарообразная капсула из роговидного соединения, внутриклеточный скелет из двуоксида кремния или сернокислого стронция, у лямблий – стержень из органического вещества.

Растительные клетки имеют в своем составе те же самые структуры, что и животные. Но для них характерны особые структуры, которых не имеют клетки животных.

Пластиды – органеллы, которые присущи только клеткам растений. Кроме того, каждая растительная клетка имеет клеточную стенку, в состав которой входит целлюлоза. Для растительных клеток характерны особые большие вакуоли, которые обеспечивают поддержку тургорного давления. Цитоплазмы клеток растений сквозь поры в клеточных стенках соединяются между собой с помощью плазмодесм , образуют единое целое – симпласт .

Животные клетки имеют надмембранную структуру – гликокаликс, отсутствующий у клеток растений.

Клеточки всех живых организмов имеют родственную структуру. Они все состоят из плазматической мембраны, оболочки вокруг нее (гликокаликса у животных либо клеточной стены: у грибов — из хитина, у растений — из целлюлозы), цитоплазмы (в ней размещены органоиды, любой из которых делает свои функции, клеточный центр, например, учавствует в делении) и ядра, которое защищает ДНК (не считая прокариотов).

Органоиды клеточки

К ним относятся рибосомы, лизосомы, митохондрии, комплекс Гольджи, эндоплазматический ретикулум и клеточный центр. В растительных клеточках также содержатся специальные органоиды, присущие только им – вакуоли. В их накапливаются ненадобные вещества, пластиды (хромопласты, лейкопласты, хлоропласты, в последних происходит процесс фотосинтеза). Функции клеточного центра, митохондрий, рибосом и других структур очень важны. Митохондрии делают роль типичных станций по выработке энергии, в их происходит процесс внутриклеточного дыхания. Рибосомы отвечают за выработку белков, синтезируя их из отдельных аминокислот в присутствии иРНК, на которой записана информация о субстанциях, нужных клеточке. Функции лизосом заключаются в расщеплении хим соединений при помощи ферментов, которые содержатся снутри органоида. Комплекс Гольджи копит и сохраняет определенные вещества. Эндоплазматический ретикулум также учавствует в обмене веществ.

Клеточный центр — строение и функции

Данный органоид еще именуют центросомой. Функции клеточного центра трудно переоценить — без этого органоида нереально было бы деление клеточки. Он состоит из 2-ух частей. В этом клеточный центр идентичен с рибосомой, в структуре которой также находятся две половины. Части центросомы именуются центриолями, любая из их смотрится как полый цилиндр, образованный из микротрубочек. Они размещены перпендикулярно друг к другу. Функции клеточного центра заключаются в образовании центриолями веретена деления в процессе мейоза либо митоза.

Как делится клеточка?

Существует два главных метода — мейоз и митоз. Функции клеточного центра появляются в обоих процессах. И в первом, и во 2-м случаях деление происходит в несколько стадий. Выделяют такие этапы: профаза, метафаза, анафаза, телофаза.
Мейоз, обычно, предполагает два поочередных деления клеток, время меж ними именуется интерфазой. Вследствие этого процесса из клеточки с диплоидным набором хромосом (двойным) появляется несколько с гаплоидным (одинарным). В процессе митоза количество хромосом не миниатюризируется — дочерние клеточки также владеют диплоидным набором. Также существует таковой метод деления, как амитоз. В этом случае ядро, а потом и вся цитоплазма просто делятся надвое. Данный вид далековато не так всераспространен, как 1-ые два, он встречается в большей степени посреди простых. Клеточный центр в этом процессе не участвует.

Роль клеточного центра в делении

Профаза предполагает подготовку к процессу митоза либо мейоза, на ее протяжении разрушаются ядерные оболочки. Во время метафазы клеточный центр разъединяется на две отдельные центриоли. Они, в свою очередь, расползаются к обратным полюсам клеточки. На этой же стадии хромосомы выстраиваются повдоль экватора. Потом нитями веретена деления они прикрепляются к центриолям таким макаром, чтоб различные хроматиды каждой хромосомы были присоединены к обратным центриолям. В протяжении метафазы любая из хромосом расщепляется на отдельные хроматиды, которые центриоли за нити притягивают к обратным полюсам.
В протяжении телофазы происходит формирование ядерных оболочек, делится цитоплазма и совсем формируются дочерние клеточки.

На вопрос Каково строение функций клеточного ядра и клеточного центра? заданный автором Ђанюха Суняйкина лучший ответ это Клеточное ядро Ядро - важнейшая составная часть клетки. Клеточное ядро содержит ДНК, т. е. гены, и, благодаря этому, выполняет две главные функции: 1)хранения и воспроизведения генетической информации 2)регуляции процессов обмена веществ, протекающих в клетке Безъядерная клетка не может долго существовать, и ядро тоже не способно к самостоятельному_существованию, поэтому цитоплазма и ядро образуют взаимозависимую систему. Большинство клеток имеет одно ядро. Нередко можно наблюдать 2-3 ядра в одной например в клетках печени. Известны и многоядерные клетки, причем число ядер может достигать нескольких десятков. Форма ядра зависит большей частью от формы клетки, она может быть и совершенно неправильной. Различают ядра шаровидные, многолопастные. Впячивания и выросты ядерной оболочки значительно увеличивают поверхность ядра и тем самым усиливают связь ядерных и цитоплазматических структур и веществ. Строение ядра Ядро окружено оболочкой, которая состоит из двух мембран, имеющих типичное строение. Наружная ядерная мембрана с поверхности, обращенной в цитоплазму, покрыта рибосомами, внутренняя мембрана гладкая. Ядерная оболочка-часть мембранной системы клетки. Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов. Обмен веществ между ядром и цитоплазмой осуществляется двумя основными путями. Во-первых, ядерная оболочка пронизана многочисленными порами, через которые происходит обмен молекулами между ядром и цитоплазмой. Во-вторых, вещества из ядра в цитоплазму и обратно могут попадать вследствии отшнуровывания впячиваний и выростов ядерной оболочки. Несмотря на активный обмен веществами между ядром и цитоплазмой, ядерная оболочка ограничивает ядерное содержимое от цитоплазмы, обеспечивая тем самым различия в химическом составе ядерного сока и цитоплазмы. Это необходимо для нормального функционирования ядерных структур.
Клеточный центр, митотический центр, постоянная структура почти всех животных и некоторых растительных клеток, определяет полюса делящейся клетки (см. Митоз). К. ц. обычно состоит из двух центриолей - плотных гранул размером 0,2-0,8 мкм, расположенных под прямым углом друг к другу. При образовании митотического аппарата центриоли расходятся к полюсам клетки, определяя ориентировку веретена деления клетки. Поэтому правильнее К. ц. называть митотическим центром, отражая этим его функциональное значение, тем более что лишь в некоторых клетках К. ц. расположен в ее центре. В ходе развития организма изменяются как положение К. ц. в клетках, так и форма его. При делении клетки каждая из дочерних клеток получает пару центриолей. Процесс их удвоения происходит чаще в конце предыдущего клеточного деления. Возникновение ряда патологических форм деления клетки связано с ненормальным делением К. ц.

Ответ от Европеоидный [новичек]
У меня в связи с данным текстом 2 вопроса. 1. В клетках высших растений клеточного центра нет. В таком случае какая структура (органоид) его замещает, например, во время деления клетки? 2.Во время деления клетки всё же клеточный центр удваивается или просто его центриоли расходятся к полюсам, т. е. он как бы расщепляется?

Гиалоплазма (цитоплазматический матрикс) - однородная мелкозернистая структура, состоящая из двух фаз - жидкой и твердой.

- Чем представлены жидкая и твердая фазы гиалоплазмы?

Жидкая фаза (цитозоль) представляет собой коллоидный раствор, состоящий из Н 2 О, белков, аминокислот, РНК, липидов, углеводов, ионов (Na + , K + , Mg 2+ , C 1 - , НС0 3 - , НР0 4 2-). Цитозоль является внутренней средой клетки, в которой происходят многие химические процессы, он объединяет все клеточные структуры и обеспечивает химическое взаимодействие между ними, является вместилищем веществ, необходимых для жизнедеятельности клетки.

Твердая фаза гиалоплазмы (цитоскелет) представленасистемой тонких белковых нитей, пересекающих цитоплазму в различных направлениях. Цитоскелет образован тремя компонентами: микротрубочками, микрофиламентами и промежуточными филаментами. Цитоскелет является каркасом клетки, определяет ее форму, связывает мембранные органеллы и плазмалемму в единое целое, упорядочивает размещение всех структурных компонентов клетки, обеспечивает внутриклеточный транспорт веществ и перемещение органелл, изменяет физические свойства гиалоплазмы (золь-гель).

Органоиды - это постоянные специализированные участки цитоплазмы, имеющие определенную структуру и выполняющие определенные функции в клетке.

Давайте вспомним классификацию органоидов клетки. Вернемся ещё раз к карточкам с названиями органоидов. Распределите их на группы

А) по строению

Б) по назначению в клетке

В) по участию в обмене в-в

Классификация органоидов:

I . По строению:

а) мембранного строения - одномембранные (ЭПС, КГ, лизосомы, вакуоли), двумембранные (митохондрии и пластиды);

б) немембранного строения - рибосомы и клеточный центр.

II . По назначению в клетке:

а) общего назначения - имеются в большинстве клеток, обеспечивают основные процессы жизнедеятельности (митохондрии, АГ, ЭПС, рибосомы, клеточный центр, лизосомы, пластиды и вакуоли с клеточным соком);

б) специального назначения - обеспечивают специализированные функции: миофибриллы - в мышечных клетках; органоиды движения (жгутики и реснички), органоиды выделения (пульсирующие вакуоли и приводящие каналы), органоиды пищеварения (клеточный рот, пищеварительная вакуоль и порошица) - в клетках протистов.

III . По участию в обмене веществ:

а) анаболической системы (синтез веществ) – ЭПС, КГ и рибосомы, пластиды;

б) катаболической системы (расщепление веществ) – митохондрии, лизосомы и микротельца.

Клеточный центр

Особенности строения: Располагается вблизи ядра клеток животных и некоторых растений. Состоит из двух маленьких телец – центриолей, перпендикулярно расположенных друг к другу. Каждая центриоль состоит из белковых микротрубочек.

Выполняемые функции: Участвует в построении веретена деления клетки. Лежат в основании жгутиков и ресничек

Включения - это непостоянные компоненты цитоплазмы, содержание которых меняется в зависимости от функционального состояния клетки. Различают трофические , секреторные и экскреторные включения. Включения могут быть окружены мембраной.

    Трофические – запасы питательных веществ в клетке: гранулы белков и крахмала или гликогена, капли жира.

    Секреторные – в клетках желез, в них накапливаются ферменты, гормоны и другие биологически активные вещества

    Экскреторные – в них накапливаются продукты жизнедеятельности, подлежащие выведению из клетки (кристаллы щавелекислого кальция, остаточные тельца).

Рибосомы - сферический органоид общего значения, немембранного строения, диаметром 17-35 нм; состоит из р-РНК (40%) и белков (60%).

Имеет 2 субъединицы: малую и большую, которые соединяются при помощи Mg 2+ . Образуются субъединицы в ядрышках. Располагаются рибосомы свободно в цитоплазме или прикрепляются к мембранам ЭПС и наружной ядерной мембране, а также имеются в митохондриях и хлоропластах.

Имеют 2 активных центра : аминоацильный (фиксация т-РНК с АК) и пептидильный (образуются пептидные связи между АК). Рибосомы образуют комплексы - полисомы.

Функции: синтез белка (трансляция)

Доказано, что клетки эукариотических организмов представлены системой мембран, образующих органоиды белково-фосфолипидного состава. Однако из этого правила существует важное исключение. Две органеллы (клеточный центр и рибосома), а также органоиды движения (жгутики и реснички) имеют немембранную структуру. Чем же они образованы? В данной работе мы постараемся найти ответ на этот вопрос, а также изучим строение клеточного центра клетки, часто называемого центросомой.

Все ли клетки содержат клеточный центр

Первый факт, который заинтересовал ученых, - это необязательное наличие данного органоида. Так, у низших грибов - хитридиомицетов - и у высших растений он отсутствует. Как выяснилось, у водорослей, в клетках человека и у большинства животных наличие клеточного центра необходимо для осуществления процессов митоза и мейоза. Первым способом делятся соматические клетки, а другим - половые. Обязательным участником в обоих процессах выступает центросома. Расхождение её центриолей к полюсам делящейся клетки и натягивание между ними нитей веретена деления обеспечивает и дальнейшее расхождение хромосом, прикрепленных к этим нитям и к полюсам материнской клетки.

Микроскопические исследования выявили особенности строения клеточного центра. В него входит от одного до нескольких плотных телец - центриолей, от которых веерообразно расходятся микротрубочки. Изучим более подробно внешний вид, а также строение клеточного центра.

Центросома в интерфазной клетке

В жизненном цикле клетки клеточный центр можно увидеть в период, называемый интерфазой. Рядом с мембраной ядра обычно располагаются два микроцилиндра. Каждый из них состоит из белковых трубочек, собранных по три штуки (триплеты). Девять таких структур образуют поверхность центриоли. Если их две (что бывает чаще всего), то они располагаются друг к другу под прямым углом. В период жизни между двумя делениями строение клеточного центра в клетке практически одинаково у всех эукариот.

Ультраструктура центросомы

Детально изучить строение клеточного центра стало возможным в результате использования электронного микроскопа. Ученые установили, что цилиндры центросом имеют следующие размеры: их длина - 0,3-0,5 мкм, диаметр - 0,2 мкм. Количество центриолей перед началом деления обязательно удваивается. Это необходимо для того, чтобы сама материнская и дочерняя клетки в результате деления получили клеточный центр, состоящий из двух центриолей. Особенности строения клеточного центра заключаются в том, что центриоли, составляющие его, не равнозначны: одна из них - зрелая (материнская) - содержит дополнительные элементы: перицентриолярный сателлит и его придатки. Незрелая центриоль имеет специфический участок, названный тележным колесом.

Поведение центросомы в митозе

Хорошо известно, что рост организма, а также его размножение происходит на уровне элементарной единицы живой природы, которой является клетка. Строение клетки, локализация и функции клетки, а также её органоидов рассматриваются цитологией. Несмотря на то что ученые провели достаточно много исследований, клеточный центр остается до сих пор недостаточно изученным, хотя его роль в клеточном делении выяснена полностью. В профазе митоза и в профазе редукционного деления мейоза центриоли расходятся к полюсам материнской клетки, а далее происходит образование нити веретена деления. Именно они прикрепляются к центромерам первичной перетяжки хромосом. Для чего же это необходимо?

Веретено деления анафазной клетки

Опыты Г. Бовери, А. Нейла и других ученых позволили установить, что строение клеточного центра и его функции взаимосвязаны. Наличие двух центриолей, биполярно расположенных по отношению к полюсам клетки, и нитей веретена деления между ними обеспечивает равномерное распределение хромосом, соединенных с микротрубочками, к каждому из полюсов материнской клетки.

Таким образом, количество хромосом будет одинаковым в дочерних клетках в результате митоза или вдвое меньше (в мейозе), чем у исходной материнской клетки. Особенно интересным представляется тот факт, что строение клеточного центра меняется и коррелятивно связано со стадиями жизненного цикла клетки.

Химический анализ органеллы

Для лучшего понимания функций и роли центросомы изучим, какие же органические соединения входят в её состав. Как и следовало ожидать, ведущими являются белки. Достаточно вспомнить, что также зависят от присутствия в ней молекул пептидов. Отметим, что в центросоме белки обладают сократительной способностью. Они входят в состав микротрубочек и называются тубулинами. Изучая внешнее и внутреннее строение клеточного центра, мы упоминали вспомогательные элементы: перицентриолярные сателлиты и придатки центриолей. В их состав входят ценексин и мирицитин.

Есть также белки, регулирующие обмен веществ органоида. Это киназа и фосфатаза - специальные пептиды, отвечающие за нуклеацию микротрубочек, то есть за образование активной молекулы-затравки, с которой начинается рост и синтез радиальных микронитей.

Клеточный центр как организатор фибриллярных белков

В цитологии окончательно закрепилось представление о центросоме как о главной органелле, отвечающей за образование микротрубочек. Благодаря обобщающим исследованиям К. Фултонаможно утверждать, что клеточный центр обеспечивает этот процесс четырьмя путями. Например: полимеризацией нитей веретена деления, формированием процентриолей, созданием радиальной системы микротрубочек интерфазной клетки и, наконец, синтезом элементов в первичной ресничке. Это особое образование, характерное для материнской центриоли. Изучая строение и функции клеточной оболочки, ученые обнаруживают её под электронным микроскопом в клеточном центре после митотического деления клетки или же в момент начала митоза. В стадию G2 интерфазы, а также на ранних этапах профазы ресничка исчезает. По химическому составу она состоит их молекул тубулина и является меткой, по которой можно определить зрелую материнскую центриоль. Так как же происходит созревание центросомы? Рассмотрим все нюансы этого процесса.

Этапы образования центриоли

Цитологи установили, что дочерняя и материнская центриоли, образующие диплосому, не одинаковы по своему строению. Так, зрелая структура окаймлена слоем перицентриолярного вещества - митотическим гало. Полное созревание дочерней центриоли происходит дольше, чем длится один жизненный цикл клетки. В конце стадии G1 второго клеточного цикла новая центриоль уже выступает в роли организатора микротрубочек и способна к формированию нитей веретена деления, а также к образованию специальных органелл движения. Ними могут быть реснички и жгутики, встречающиеся у одноклеточных простейших животных (например, эвглены зеленой, инфузории-туфельки), а также у многих водорослей, например хламидомонады. Жгутиками, образованными благодаря микротрубочкам клеточного центра, снабжены многие споры у водорослей, а также половые клетки животных и человека.

Роль центросомы в жизнедеятельности клетки

Итак, мы убедились в том, что одна из самых маленьких клеточных органелл (занимает менее 1 % объема клетки) играет ведущую роль в регуляции метаболизма как растительных, так и животных клеток. Нарушение формирования веретена деления влечет за собой образование генетически дефектных дочерних клеток. Их наборы хромосом отличаются от нормального количества, что приводит к хромосомным аберрациям. Как результат - развитие аномальных особей или же их гибель. В медицине установлен факт взаимосвязи количества центриолей от риска развития онкозаболеваний. Например, если нормальные клетки кожи содержат 2 центриоли, то биопсия тканей при заболевании раком кожи выявляет увеличение их количества до 4-6. Эти результаты служат доказательством ключевой роли центросомы в контроле над клеточным делением. Последние экспериментальные данные указывают на важную роль этой органеллы в процессах внутриклеточного транспорта. Уникальное строение клеточного центра позволяет ему регулировать как форму клетки, так и её изменение. У нормально развивающейся единицы центросома располагается рядом с аппаратом Гольджи, вблизи ядра, и вместе с ними обеспечивает интегративную и сигнальную функции в осуществлении митоза, мейоза, а также запрограммированной клеточной смерти - апуптоза. Именно поэтому современные цитологи считают центросому важным объединяющим органоидом клетки, отвечающим как за её деление, так и за весь метаболизм в целом.