Где используется принципиальная схема каскадного усилителя радиочастоты. Расчет входных цепей и урч радиоприемника

Для повышения чувствительности и реальной селективности гетеродинного приемника входная цепь должна обеспечивать близкий к единице коэффициент передачи мощности в рабочем диапазоне частот и как можно большее ослабление внедиапазонных сигналов. Все это - свойства идеального полосового фильтра, поэтому и выполнять входную цепь надо в виде фильтра.

Часто применяемая одноконтурная входная цепь хуже всего отвечает предъявляемым требованиям. Для увеличения селективности надо повышать нагруженную добротность контура, ослабляя его связь с антенной и смесителем или УРЧ.

Но тогда почти вся мощность принимаемого сигнала будет расходоваться в контуре и лишь малая ее часть пройдет в смеситель или УРЧ. Коэффициент передачи мощности получится низким. Если же сильно связать контур с антенной и смесителем, упадет нагруженная добротность контура и он будет мало ослаблять сигналы соседних по частоте станций.

А ведь рядом с любительскими диапазонами работают и очень мощные радиовещательные станции.

Одиночный входной контур в качестве преселектора можно использовать на низкочастотных KB диапазонах, где уровни сигналов достаточно велики, в простейших гетеродинных приемниках. Связь с антенной следует сделать регулируемой, а сам контур перестраиваемым, как показано на рис. 1.

В случае помех от мощных станций можно ослабить связь с антенной, уменьшая емкость конденсатора С1, тем самым увеличив селективность контура и одновременно увеличив потери в нем, что эквивалентно включению аттенюатора. Суммарную емкость конденсаторов С2 и СЗ выбирают около 300...700 пФ, данные катушки зависят от диапазона.

Рис.1. Одноконтурная входная цепь.

Значительно лучшие результаты дают полосовые фильтры, согласованные по входу и выходу. В последние годы наметилась тенденция применять переключаемые полосовые фильтры даже на входе широкодиапазонных профессиональных связных приемников. Используют октавные (редко), полуоктавные и четвертьоктавные фильтры.

Отношение верхней частоты их полосы пропускания к нижней равно соответственно 2; 1,41(корень из 2) и 1,19 (корень четвертой степени из 2). Разумеется, чем узкополоснее входные фильтры, тем помехозащищенность широкодиапазонного приемника выше, но число переключаемых фильтров значительно возрастает.

Для приемников, рассчитанных только на любительские диапазоны, число входных фильтров равно числу диапазонов, а их полоса пропускания выбирается равной ширине диапазона, обычно с запасом в 10...30%.

В трансиверах полосовые фильтры целесообразно устанавливать между антенной и антенным переключателем прием/передача. Если усилитель мощности трансивера достаточно широкополосен, как, например, в случае транзисторного усилителя, его выходной сигнал может содержать много гармоник и других внедиапазоиных сигналов. Полосовой фильтр будет способствовать их подавлению.

Требование близкого к единице коэффициента передачи мощности фильтра в этом случае особенно важно. Элементы фильтра должны выдерживать реактивную мощность, в несколько раз превосходящую номинальную мощность передатчика трансивера.

Характеристическое сопротивление всех диапазонных фильтров целесообразно выбрать одинаковым и равным волновому сопротивлению фидера 50 или 75 Ом.


Рис.2. Полосовые фильтры: а - Г-образный; б - П-образный

Классическая схема Г-образного полосового фильтра дана на рис.2,а. Расчет его чрезвычайно прост. Сначала определяется эквивалентная добротность Q = fo/2Df, где fo - средняя частота диапазона, 2Df - полоса пропускания фильтра. Индуктивности и емкости фильтра находятся по формулам:

где R - характеристическое сопротивление фильтра.

На входе и выходе фильтр должен нагружаться сопротивлениями, равными характеристическому, ими могут быть входное сопротивление приемника (или выходное передатчика) и сопротивление антенны.

Рассогласование до 10...20% практически мало сказывается на характеристиках фильтра, но отличие нагрузочных сопротивлений от характеристического в несколько раз резко искажает кривую селективности, в основном в полосе пропускания.

Если сопротивление нагрузки меньше характеристического, ее можно подключить автотрансформаторно, к отводу катушки L2. Сопротивление уменьшится в k2 раз, где k - коэффициент включения, равный отношению числа витков от отвода до общего провода к полному числу витков катушки L2.

Селективность одного Г-образного звена может оказаться недостаточной, тогда два звена соединяют последовательно. Соединять звенья можно либо параллельными ветвями друг к другу, либо последовательными. В первом случае получается Т-образный фильтр, во втором - П-образный.

Элементы L и С соединенных ветвей объединяются. В качестве примера на рис.2,б показан П-образный полосовой фильтр. Элементы L2C2 оетались прежними, а элементы продольных ветвей обьединились в индуктивность 2L и емкость С1/2. Легко видеть, что частота настройки получившегося последовательного контура (так же, как и остальных контуров фильтра) осталась прежней и равной средней частоте диапазона.

Часто при расчете узкополосных фильтров значение емкости продольной ветви С1/2 получается слишком маленьким, а индуктивности - слишком большим. В этом случае продольную ветвь можно подключить к отводам катушек L2, увеличив емкость в 1/k2 раз, а индуктивность во столько же раз уменьшив.


Рис.3. Двухконтурный фильтр.

Встотных фильтрах бывает удобно использовать только параллельные колебательные контура, соединенные одним выводом с общим проводом.

Схема двухконтурного фильтра с внешней емкостной связью показана на рис.3. Индуктивность и емкость параллельных контуров рассчитываются по формулам (1) для L2 и С2, а емкость конденсатора связи должна составить C3=C2/Q.

Коэффициенты включения выводов фильтра зависит от требуемого входного сопротивления Rвх и характеристического сопротивления фильтра R: k2=Rвх/R. Коэффициенты включения с двух сторон фильтра могут быть и разными, обеспечивая согласование с антенной и входом приемника или выходом передатчика.

Для увеличения селективности можно включить по схеме рис.3 три и более одинаковых контуров, уменьшив емкости конденсаторов связи СЗ в 1,4 раза.


Рис.4. Селективность трехконтурного фильтра.

Теоретическая кривая селективности трехконтурного фильтра приведена на рис.4. По горизонтали отложена относительная расстройка x=2DfQ/fo, а по вертикали - ослабление, вносимое фильтром.

В полосе прозрачности (x<1) ослабление равно нулю, а коэффициент передачи мощности - единице. Это понятно, если учесть, что теоретическая кривая построена для элементов без потерь, имеющих бесконечную конструктивную добротность.

Реальный фильтр вносит некоторое ослабление и в полосе пропускания, что связано с потерями в элементах фильтра, главным образом в катушках. Потери в фильтре уменьшаются с увеличением конструктивной добротности катушек Q0. Например, при Q0 = 20Q потери даже в трехконтурном фильтре не превышают 1 дБ.

Ослабление за пределами полосы пропускания прямо зависит от числа контуров фильтра. Для двухконтурного фильтра ослабление равно 2/3 указанного на рис.4, а для одноконтурной входной цепи - 1/3. Для П-образного фильтра рис.3,б пригодна кривая селективности рис.4 без всякой коррекции.


Рис.5. Трехконтурный фильтр - практическая схема.

Практическая схема трехконтурного фильтра c полосой пропускания 7,0...7,5 МГц и его экспериментально снятая характеристика показаны на рис.5 и 6 соответственно.

Фильтр рассчитан по описанной методике для сопротивления R=1,3 кОм, но был нагружен на входное сопротивление смесителя гетеродинного приемника 2 кОм. Селективность немного возросла, но появились пики и провалы в полосе пропускания.

Катушки фильтра намотаны виток к витку на каркасах диаметром 10 мм проводом ПЭЛ 0,8 и содержат по 10 витков. Отвод катушки L1 для согласования с сопротивлением фидера антенны 75 Ом сделан от второго витка.

Все три катушки заключены в отдельные экраны (алюминиевые цилиндрические «стаканчики» от девятиштырьковых ламповых панелек). Настройка фильтра проста и сводится к настройке контуров в резонанс подстроечниками катушек.


Рис.6. Измеренная кривая селективности трехконтурного фильтра.

Особо следует остановиться на вопросах получения максимальной конструктивной добротности катушек фильтров. Не следует стремиться к особой миниатюризации, поскольку добротность растет с увеличением геометрических размеров катушки.

По этой же причине нежелательно использовать слишком тонкий провод. Серебрение провода дает ощутимый эффект лишь на высокочастотных KB диапазонах и на УКВ при конструктивной добротности катушки более 100. Литцендрат целесообразно применять лишь для намотки катушек диапазонов 160 и 80 м.

Меньшие потери в посеребренном проводе и литцендрате связаны с тем, что высокочастотные токи не проникают в толщу металла, а протекают лишь в тонком поверхностном слое провода (так называемый скин-эффект).

Идеально проводящий экран не снижает добротности катушки и к тому же устраняет потери энергии в окружающих катушку предметах. Реальные экраны вносят некоторые потери, поэтому диаметр экрана желательно выбирать равным не менее 2-3 диаметров катушки.

Экран следует выполнять из хорошо проводящего материала (медь, несколько хуже алюминий). Недопустима окраска или лужение внутренних поверхностей экрана.

Перечисленные меры обеспечивают исключительно высокую добротность катушек, реализуемую, например, в спиральных резонаторах.

В диапазоне 144 МГц она может достигать 700...1000. На рис.7 показана конструкция двухрезонаторного полосового фильтра диапазона 144 МГц, рассчитанного на включение в 75-омную фидерную линию.

Резонаторы смонтированы в прямоугольных экранах размерами 25X25X50 мм, спаянных из листовой меди, латуни или пластинок двустороннего фольгированного стеклотекстолита.

Внутренняя перегородка имеет отверстие связи размером 6X12,5 мм. На одной из торцевых стенок закреплены воздушные подстроечные конденсаторы, роторы которых соединены с экраном.

Катушки резонатора бескаркасные. Они выполнены из посеребренного провода диаметром 1,5...2 мм и имеют по 6 витков диаметром 15 мм, равномерно растянутых на длину около 35 мм. Один вывод катушки припаивается к статору подстроечного конденсатора, другой - к экрану.

Отводы ко входу и выходу фильтра сделаны от 0,5 витка каждой кагушки. Полоса пропускания настроенного фильтра немногим более 2 МГц, вносимые потери исчисляются десятыми долями децибела Полосу пропускания фильтра можно регулировать, изменяя размеры отверстия связи и подбирая положение отводов катушек.


Рис.7. Фильтр на спиральных резонаторах.

На более высокочастотных УКВ диапазонах катушку целесообразно заменить прямым отрезком провода или трубки, тогда спиральный резонатор превращается в коаксиальный четвертьволновый резонатор, нагруженный емкостью.

Длину резонатора можно выбрать около л/8, а недостающая до четверти длины волны длина компенсируется подстроечной емкостью.

В особо тяжелых условиях приема на KB диапазонах входной контур или фильтр гетеродинного приемника делают узкополосным, перестраиваемым. Для получения высокой нагруженной добротности и узкой полосы связь с антенной и между контурами выбирается минимальной, а для компенсации возросших потерь применяется УРЧ на полевом транзисторе.

Его цепь затвора мало шунтирует контур и почти не снижает его добротности. Биполярные транзисторы в УРЧ устанавливать нецелесообразно по причине их низкого входного сопротивления и значительно большей нелинейности.

Схема УРЧ

Схема усилителя радиочастоты (УРЧ) показана на рис.8. Двухконтурный перестраиваемый полосовой фильтр на его входе обеспечивает всю требуемую селективность, поэтому в цепи стока транзистора включен неперестраиваемый контур L3C9 малой добротности, зашунтированный резистором R3.

Этим резистором подбирают коэффициент усиления каскада. Ввиду малого усиления нейтрализации проходной емкости транзистора не требуется.


Рис.8. Усилитель радиочастоты.

Контур в цепи стока можно использовать и для получения дополнительной селективности, если шунтирующий резистор исключить, а для снижения усиления сток транзистора подключить к отводу контурной катушки.

Схема такого УРЧ для диапазона 10 м показана на рис.9. Он обеспечивает чувствительность приемника лучше 0,25 мкВ В усилителе можно применить двухзатворные транзисторы КП306, КП350 и КП326, имеющие малую проходную емкость, что способствует устойчивости работы УРЧ с резонансной нагрузкой.


Рис.9. УРЧ на двухзатворном транзисторе.

Режим транзистора устанавливают подбором резисторов R1 и R3 так, чтобы ток, потребляемый от источника питания, составлял 4... 7 мА. Усиление подбирается перемещением отвода катушки L3 и при полном включении катушки достигает 20 дБ.

Контурные катушки L2 и L3 намотаны на кольцах К10X6X4 из феррита 30ВЧ и имеют по 16 витков провода ПЭЛШО 0,25. Катушки связи с антенной и смесителем содержат по 3-5 витков такого же провода. В усилитель легко ввести сигнал АРУ, подав его на второй затвор транзистора. При снижении потенциала второго затвора до нуля усиление уменьшается на 40...50 дБ.

Литература: В.Т.Поляков. Радиолюбителям о технике прямого преобразования. М. 1990г.

УРЧ представляют собой активные частотно-избирательные каскады приемников, работающих на фиксированной частоте или в диапазоне частот. Они применяются для обеспечения высокой чувствительности радиоприемных устройств за счет предварительного усиления сигнала и его частотной селекции.

Основные требования и качественные показатели

1. Резонансный коэффициент усиления по напряжению

Или по мощности,

где G вх, G н - активные составляющие проводимостей входа и нагрузки усилителя.

2. Частотная избирательность - главным образом по зеркальному каналу супергетеродинных приемников (
).

3. Коэффициент шума УРЧ , который в значительной мере определяет способность приемника воспроизводить полезную информацию при малых уровнях принимаемого сигнала. С точки зрения минимального уровня шумов достаточно, чтобы коэффициент усиления по мощности УРЧ был на уровне 10-100, поэтому требуемое число каскадов обычно не превышает двух.

4. Устойчивость , характеризует отсутствие самовозбуждение усилите­ля.

Кроме того УРЧ по своим показателям должны обеспечивать усиление сигналов в определенном динамическом диапазоне с искажениями, не превышающими заданного уровня.

Учитывая, что УРЧ работает в режиме усиления слабых сигналов, бу­дем считать усилительный прибор линейным активным 4-х полюсником.

Резонансный усилительный каскад умеренно высоких частот

В диапазоне умеренно высоких частот (f < 300 МГц) для описания свойств усилительных каскадов удобно использовать систему Y -параметров, в которой уравнение линейного 4-полюсника записывается в виде (5.1)

(5.1)

где , и,- напряжения и токи на входе и выходе 4-полюсника соответственно,

- параметры в режиме короткого замыкания по входу и выходу 4-полюсника.

Наиболее общая схема резонансного каскада может быть представлена в виде (Рис. 5.1).

На рисунке представлена схема резонансного усилителя, в которой к контуру L C частично подключены как выход транзистора VT 1 , так вход следующего каскада на транзисторе VT 2 . В обоих случаях применяется автотрансформаторная связь. Однако в таком усилителе указанные связи могут быть реализованы и другим известным способом, например, трансформаторным.

Элементы R 1 , R 2 , ,применяются для задания режима работыактивного элемента VT 1 по постоянному току. Необходимая фильтрация по питанию осуществляется фильтром R ф , C ф . Расчет этих элементов производится аналогично, как это делается для апериодических усилителей. Поэтому вопросы задания рабочей точки резонансных усилителей здесь не рассматриваются.

Независимо от типа связи усилительного прибора с резонансным контуром резонансный усилитель можно представить в виде следующей эквивалентной схемы (Рис. 5.2).

Из представленной эквивалентной схемы следует, что

(5.2)

При использовании двойной автотрансформаторной связи проводимость нагрузки может быть представлена как

, (5.3)

где,
.

Коэффициент усиления по напряжению можно получить, если использовать выражения (5.1) и (5.2). С учетом этих выражений можно получить

(5.4)

Из последнего выражения можно получить

(5.5)

Откуда получаем

, (5.6)

где - полная эквивалентнаяпроводимость контура.

Резонансные свойства каскада определяются частотной характеристикой проводимости
, а последняя соответствует резонансной характеристике колебательного контура LC . Эквивалентное сопротивление колеба­тельного контура, включенного в коллекторную цепь транзистора можно представить следующим образом

Полное эквивалентное сопротивление контура
можно представить

, (5.8)

где
-обобщенная расстройка контура.

Коэффициент усиления каскада на резонансной частоте можно представить как

, (5.9)

где
.

- коэффициент трансформации от выхода первого активного элемента до входа следующего.

С учетом этого для резонансного каскада получим следующее выраже­ние для коэффициента усиления

(5.10)

По структуре полученная формула соответствует формуле для опреде­ления коэффициента усиления апериодического каскада, только в качестве нагрузки в последнем используется резонансный контур.

Так как усилитель радиочастоты находится на входе радиоприемного устройства, то его шумовые характеристики и динамический диапазон в основном определяют характеристики всего устройства в целом. Именно коэффициент шума усилителя радиочастоты определяет чувствительность радиоприемника.

Усиление сигналов в приёмнике может происходить до преобразователя частоты, т.е. на принимаемой частоте, и после преобразователя - на промежуточной частоте. Усиление на частоте принимаемого сигнала осуществляется с помощью усилителей радиочастоты (УРЧ). Кроме усиления должна обеспечиваться и частотная избирательность. Диапазонные УРЧ должны иметь контуры с переменной настройкой. Они чаще всего выполняются одноконтурными. Активным элементом усилителя служит полевой или биполярный транзистор в дискретном или интегральном исполнении. В усилителях промежуточной частоты предпочтение отдается биполярным транзисторам вследствие обеспечения ими более высокого коэффициента усиления. Усилители радиочастоты УРЧ повышают избирательность по зеркальному каналу и чувствительность приемника. По схемному по-строению УРЧ могут быть апериодическими или резонансными.

Апериодические УРЧ увеличивают лишь отношение сиг-нал/шум и чувствительность приемника. Наиболее часто их приме-няют в транзисторных приемниках прямого усиления на ДВ- и СВ-диапазонах. В качестве нагрузки апериодических УРЧ может служить дроссель, резистор или трансформатор. Резисторный кас-кад УРЧ прост в исполнении и настройке. В трансфор-маторных УРЧ) облегчается согласование выхода одно-го каскада со входом последующего. Кроме того, трансформаторный каскад УРЧ можно легко переделать в рефлексный.

Резонансные УРЧ обеспечивают усиление сигнала и по-вышают не только реальную чувствительность, но и избирательность по зеркальному каналу Транзисторные резонансные УРЧ в диапазонах ДВ, СВ и KB собирают по схеме с ОЭ а в УКВ-диапазоне — по схеме с ОБ.

Каскады УРЧ могут содержать один или два резонансных кон-тура. Усилитель радиочастоты с одним контуром дает меньшее уси-ление, но более прост в изготовлении и настройке. Схемы с индук-тивной связью контуров позволяют изменять связь и получать наи-большее усиление или лучшую избирательность. Изменением связи по диапазону можно несколько компенсировать неравномерность ко-эффициента передачи входных цепей.

Усилители радиочастоты УКВ-диапазона выполняют по каскадным схемам. Они имеют лучшие характеристики, чем обычные УРЧ. Первый тран-зистор включен по схеме с ОЭ, благодаря чему достигается малая входная проводимость усилителя, а второй V2 — по схеме с ОБ, что обеспечивает большой коэффициент устойчивого усиления. По посто-янному току транзисторы включены последовательно, что вызывает необходимость увеличения напряжения источника питания.

По усилению каскодный усилитель эквивалентен однокаскадному усилителю с проводимостью прямой передачи первого транзистора и нагрузкой второго. Каскодная схема используется в усили-телях диапазона метровых волн. Первый каскад схемы выгодно вы-полнять на полевом транзисторе, обладающем низким уровнем шумов и малой «ктивной входной проводимостью, при этом будет меньше шунтироваться избирательная система приемника, включен-ная на входе каскодного усилителя. Во втором каскаде предпочтите-лен дрейфовый транзистор, включаемый по схеме с ОБ и обеспечивающий наибольший устойчивый коэффициент усиления. При таком выполнении каскодной схемы усилителя повышается его коэффици-ент устойчивого усиления, существенно снижается уровень шумов, повышается избирательность тракта радиосигнала приемника, что является их преимуществом.

Аналогичными преимуществами обладают каскадные схемы (низкий уровень шумов и высокий коэффициент, устойчивого усиле-ния) на электронных лампах, обычно триодах, включаемых по схеме общий катод — общая сетка.

10.1 Назначение и основные характеристики усилителя радиочастоты

Усиление на частоте принимаемого сигнала производится с помощью усилителей радиочастоты (УРЧ). Кроме усиления должна обеспечиваться и частотная избирательность. Для этого усилители содержат резонансные элементы межкаскадной связи: одиночные колебательные контуры или системы связанных контуров.

Диапазонные УРЧ должны иметь контуры с переменной настройкой. Они чаще всего выполняются одноконтурными.

В диапазонах умеренно высоких частот активным элементом усилителя служит электронная лампа или транзистор.

На СВЧ применяются усилители с лампами бегущей волны, на туннельных диодах, параметрические и квантовые усилители.

В большинстве современных приемников используют однокаскадные УРЧ. Реже, при высоких требованиях к избирательности и коэффициенту шума, УРЧ могут содержать два или более каскадов.

Основные электрические характеристики усилителей:

1. Резонансный коэффициент усиления напряжения

В полосовых усилителях резонансный коэффициент усиления определяется на средней частоте полосы пропускания.

Коэффициентом усиления по мощности называют величину отношения мощности в нагрузке к мощности, потребляемой на входе усилителя:

где - активная составляющая входной проводимости усилителя; - активная составляющая проводимости нагрузки.

Нагрузкой УРЧ чаще всего служит вход следующего каскада усилителя или преобразователя частоты.

2. Избирательность усилителя показывает относительное уменьшение усиления при заданной расстройке. Иногда избирательность характеризуют коэффициентом прямоугольности.

3. Коэффициент шума, определяющий шумовые свойства усилителя.

4. Искажения сигнала в усилителе. В УРЧ искажения могут быть: нелинейные, вызываемые нелинейностью характеристики активного элемента, и линейные – амплитудно-частотные и фазо-частотные.

5. Устойчивость работы усилителя определяется его способностью сохранять в процессе эксплуатации основные характеристики, а также отсутствием склонности к самовозбуждению.

10.2 Схемы усилителя радиочастоты

В усилителях радиочастоты находят применение в основном две схемы включения активного элемента: с общим катодом (ОК) и общей сеткой (ОС) в ламповых усилителях; с общим эмиттером (ОЭ) и общей базой (ОБ) в транзисторных (биполярных) усилителях; с общим истоком (ОИ) и общим затвором (ОЗ) в каскадах на полевых транзисторах.

Усилители с общим катодом (эмиттером, истоком) в диапазонах километровых, гектометровых, декаметровых и метровых волн позволяют получить наиболее высокое усиление по мощности по сравнению с другими схемами включения.

Усилители с общей сеткой (базой, затвором) отличаются большей устойчивостью против самовозбуждения. Поэтому в дециметровом диапазоне волн ламповые усилители используются только в схеме с общей сеткой.

Транзисторные усилители с общей базой (затвором) используются и на более длинноволновых диапазонах.

Принципы построения и анализа резонансных усилителей идентичны для различных схем включения усилительных приборов, потому в основном будем рассматривать усилители с общим катодом (эмиттером, истоком).

По способу связи контура с активными элементами различают схемы с непосредственной, автотрансформаторной и трансформаторной связью.

Схемы с непосредственной связью контура используются при больших входных и выходных сопротивлениях активного элемента (например, в усилителях на электронных лампах и на полевых транзисторах).

Рисунок 10.1 Резонансный усилитель на полевом транзисторе

Рассмотрим схему резонансного усилителя на полевом транзисторе (рисунок 10.1).

Его отличие от резисторного в том, что в цепь стока включен колебательный контур, содержащий индуктивность и емкости , . Настраивается контур на резонансную частоту конденсатором переменной емкости .

На частоте резонанса контур имеет наибольшее эквивалентное активное сопротивление. При этом коэффициент усиления усилителя будет максимальным, называемым резонансным. На частотах, отличающихся от резонансной, эквивалентное сопротивление и коэффициент усиления уменьшаются, что определяет избирательные свойства усилителя.

Поскольку величина емкости конденсатора в 50 – 100 раз превышает максимальную емкость конденсатора , то резонансная частота контура определяется практически параметрами и .

В схеме применено последовательное питание стока через развязывающий фильтр и индуктивность (полевых транзисторах сток и исток можно поменять местами). Исходный режим на затворе определяется величиной падения напряжения тока истока на . Емкость устраняет отрицательную обратную связь по переменному току. Конденсатор разделительный. Резистор служит для подачи исходного напряжения на затвор.

Полевые транзисторы с изолированным затвором позволяют получить очень малую величину проходной емкости, обеспечивающую устойчивую работу усилителя даже на СВЧ, с показателями, лучшими, чем у электронных ламп.

Схемы с автотрансформаторной и трансформаторной связью контура позволяют устанавливать необходимую величину связи контура с активными элементами для достижения заданной избирательности и усиления, а также для повышения устойчивости работы усилителя.

Автотрансформаторная и трансформаторная схемы связи используются как в ламповых, так и в транзисторных усилителях, но особенно характерно их применение в усилителях на биполярных транзисторах, вследствие сравнительно малых входного и выходного сопротивлений у них даже на относительно невысоких частотах.

Рассмотрим автотрансформаторные и трансформаторные схемы связи на примере усилителей на биполярных транзисторах (рисунок 10.2, 10.3).

На рисунке10.2 приведена схема с двойной автотрансформаторной связью контура с транзисторами. Ее отличие от схемы рисунка 10.1 в том, что контур подключен к усилительным приборам с помощью отводов с коэффициентами трансформации и . Напряжение питания на коллектор подано через развязывающий фильтр и часть витков катушки индуктивности контура . Исходный режим и температурную стабилизацию обеспечивают с помощью резисторов . Емкость устраняет отрицательную обратную связь по переменному току. Конденсатор – разделительный, предотвращает попадание питающего напряжения коллектора в цепь базы.

Рисунок 10.2 Схема с двойной автотрансформаторной связью контура

На рисунке 10.3 приведена схема с трансформаторной связью.

Рисунок 10.3 Схема с трансформаторной связью

Контур имеет трансформаторную связь с коллектором транзистора данного каскада и автотрансформаторную со входом следующего. Трансформаторная связь конструктивно более удобна (более гибкая).

Общим для всех схем является двойное частичное включение контура. Полное включение можно рассматривать как частный случай, когда коэффициенты включения (трансформации) равны единице.

10.3 Обратные связи в усилителях радиочастоты

В усилителях в целом и в отдельных его каскадах всегда образуются цепи, создающие пути для прохождения усиливаемого сигнала с выхода на вход. Эти цепи создают обратные связи .

При сильной положительной обратной связи может наступить самовозбуждение и усилитель превратится в генератор незатухающих колебаний. Если из-за обратной связи усилитель не возбуждается, но близок к самовозбуждению, то его работа будет неустойчива.

При малейшем изменении параметров усилительного прибора, например из-за изменения напряжения источника питания, температуры, будут резко меняться и усиление и полоса пропускания усилителя. Поэтому к усилителю предъявляют требование устойчивости, под которым понимают не только необходимость отсутствия самовозбуждения, но главным образом постоянство его параметров в процессе эксплуатации.

Причины образования обратных связей в усилителях:

1. Наличие внутренней обратной проводимости в усилительных приборах, связывающей входные и выходные цепи каскадов.

2. Связь через общие источники питания нескольких каскадов усиления.

3. Индуктивные и емкостные обратные связи, возникающие между монтажными проводами, катушками и другими деталями усилителя.

Обратная связь в усилителях возможна через общие цепи питания, через внешние элементы схемы, через проводимость внутренней обратной связи активного элемента. Первые два вида обратной связи, в принципе, могут быть устранены рациональным построением схемы и конструкции усилителя.

Обратная связь через общий источник питания в многокаскадных схемах, где элементом связи служит его внутреннее сопротивление, является одной из важных причин неустойчивости усилителей.

Эти обратные связи ослабляются в нужной степени введением в усилитель соответствующих развязывающих фильтров, состоящих из резисторов и емкостей , и снижением внутреннего сопротивления источника питания для переменных токов (например, шунтированием его большой емкостью).

Вредные магнитные и емкостные обратные связи устраняются рациональной конструкцией усилителя и его монтажа и экранированием основных элементов входной и выходной цепи отдельных каскадов.

Внутренняя обратная связь , принципиально присущая усилительным приборам, является главной причиной неустойчивости усилителей. Поэтому ее наличие должно учитываться при расчете усилителей.

Рассмотрим влияние внутренней обратной связи. Внутренняя обратная связь в усилителе обусловлена обратной проводимостью .

На рисунке 10.4 приведена упрощенная принципиальная схема каскада усилителя с автотрансформаторным включением контура I во входную цепь и контура II в выходную цепь усилительного прибора.

Рисунок 10.4 К вопросу о влиянии внутрен­ней обратной связи

Предположим, что контуры I и II достаточно хорошо экранированы один от другого и в цепи питания включены блокирующие фильтры. В этом случае единственным источником обратной связи, которая может привести к самовозбуждению усилителя, будет проводимость усилительного прибора.

Наличие в усилительных приборах внутренней обратной связи через проводимость приводит к влиянию нагрузки и выходной проводимости усилительного прибора на его входную проводимость и изменяет ее характер.

10.4 Устойчивость работы усилителя радиочастоты

Наличие в усилительных приборах внутренней обратной связи приводит к взаимному влиянию контуров УРЧ (входного I и выходного II, рисунок4), а также к нестабильности в процессе эксплуатации основных параметров усилителя: коэффициента усиления, полосы пропускания, избирательности и др.

Причем комплексный характер проводимости и крутизны усилительного прибора приводит к сложной частотной зависимости этого влияния.

Во входной контур I вносится дополнительная проводимость, которая в общем случае имеет комплексный характер и вызывает искажение формы его частотной характеристики.

Эти искажения тем сильнее, чем больше коэффициент усиления усилителя.

Для нормальной и устойчивой работы УРЧ необходимо обеспечить малое изменение формы его частотной характеристики под влиянием внутренней обратной связи. Для этого необходимо определить максимальное значение коэффициента усиления каскада, при котором эти искажения еще не будут влиять на качество работы усилителя.

Подобные искажения частотной характеристики под влиянием внутренней обратной связи приводят к неустойчивости ее формы. Небольшие изменения параметров усилительного прибора, вызванные неизбежными в процессе эксплуатации изменением температуры или режима питания, приводят к изменению формы частотной характеристики.

Для того чтобы форма частотной характеристики входного контура и его полоса пропускания не сильно искажались, необходимо, чтобы вносимая обратной связью проводимость практически не влияла на полную проводимость входного контура.

Усилитель считается устойчивым (устойчиво работающим), если внутренняя обратная связь усилительного прибора незначительно изменяет форму его частотной характеристики и полосу пропускания.

Для количественной оценки степени устойчивости используется коэффициент устойчивости, который характеризует влияние внутренней обратной связи на искажение частотной характеристики входного контура.

Коэффициент устойчивости равен отношению

где - эквивалентное сопротивление, добротность и полоса пропускания входного контура без учета влияния внутренней обратной связи;

Эквивалентное сопротивления, добротность и полоса пропускания входного контура с учетом влияния внутренней обратной связи.

Таким образом, за критерий устойчивости принимается величина, которая показывает, во сколько раз изменяется добротность и полоса пропускания входного контура за счет влияния внутренней обратной связи.

Если обратные связи отсутствуют, то и .

Если же обратные связи полностью скомпенсировали потреи во входном контуре и усилитель самовозбуждается, то и .

Таким образом, коэффициент устойчивости изменяется от 0 до 1. Чем больше коэффициент устойчивости, тем дальше усилитель от состояния самовозбуждения, тем меньше искажение формы его частотной характеристики и изменение полосы пропускания.

Можно допустить изменение полосы пропускания входного контура под влиянием внутренней обратной связи на (10-20)%, для чего обычно принимают .

Многокаскадные усилители более склонны к самовозбуждению за счет проводимости , чем однокаскадные.

10.5 Искажения в усилителях радиочастоты

Усиливаемые УРЧ сигналы обычно имеют сложную форму, т.е. состоят из колебаний различных частот с различными амплитудами и фазами. УРЧ может вносить в усиливаемый сигнал следующие виды искажений: амплитудно-частотные, фазо-частотные и нелинейные.

В связи с тем, что полоса пропускания УРЧ обычно значительно шире, чем основного избирательного тракта промежуточных частот, то практически УРЧ амплитудно-частотных искажений в усиливаемый сигнал не вносит. Такие УРЧ практически не вносят и фазо-частотных искажений, поскольку они широкополосные и обычно не содержат более двух каскадов.

Исключение составляют УРЧ диапазона километровых волн (10-500 кГц).

Наибольшую опасность в УРЧ представляют нелинейные искажения. Если характеристика усилительного прибора нелинейна для области амплитуд полезного сигнала на входе УРЧ, то в нем могут возникать нелинейные искажения.

При большой амплитуде мешающих сигналов и нелинейности характеристики усилительного прибора УРЧ между полезным и мешающим сигналами возникает нелинейное взаимодействие.

В результате появляются нелинейные явления, такие, как:

Перекрестная модуляция;

Забитие полезного сигнала мешающим сигналом;

Взаимная модуляция (интермодуляция) между мешающими сигналами, частоты которых не совпадают с частотой настройки УРЧ, на продукты их взаимодействия попадают в полосу пропускания полезного сигнала или совпадают с частотами дополнительных каналов приема.

Перекрестная модуляция проявляется в том, что сигнал мешающей станции, значительно отличающийся по частоте от сигнала принимаемой станции (полезного), на частоту которой настроен УРЧ, существует на выходе УРЧ одновременно с полезным сигналом.

При прекращении работы станции, на частоту которой настроен УРЧ (пропадании полезного сигнала), мешающий сигнал полностью пропадает.

Перекрестная модуляция возникает в УРЧ при одновременном взаимодействии на его входе двух и более (полезного и мешающих) сигналов, из которых хотя бы один мешающий сигнал большой амплитуды.

Этот сигнал с большей амплитудой перемещает рабочую точку усилительного прибора на нелинейной части его характеристики со своей собственной частотой.

В результате происходит изменение крутизны характеристики усилительного прибора за счет действия сильного мешающего сигнала и перенос модуляции с мешающего сигнала на полезный.

При этом ухудшается различимость полезного сигнала, а при больших уровнях помехи прием становится невозможным.

Величина перекрестной модуляции не зависит от амплитуды полезного сигнала, поэтому ее нельзя уменьшить за счет увеличения амплитуды полезного сигнала.

В коротковолновом диапазоне уровень мешающих сигналов на входе УРЧ может достигать единиц и даже десятков вольт.

Забитием УРЧ помехой называют уменьшение усиления УРЧ и соответствующее ослабление полезного сигнала под действием мешающего сигнала близкой частоты и очень большой амплитуды.

Полосу частот, в которой наблюдается это явление, называют полосой забития.

Явление забития объясняется теми же причинами, как и перекрестная модуляция.

При очень больших амплитудах мешающих сигналов происходит не только модуляция крутизны, но и уменьшение ее среднего значения; может также резко возрастать постоянная составляющая входного тока усилительного прибора.

Взаимная модуляция (интермодуляция) происходит в усилителе радиочастоты при одновременном воздействии на его входе двух и более мешающих сигналов (например, частоты и ) большой амплитуды, выходящей за пределы линейного рабочего участка характеристики усилительного прибора.

В результате взаимодействия этих сигналов возникают комбинационные помехи вида:

Совпадающие с частотой настройки УРЧ;

Совпадающие с частотой зеркального или дополнительного каналов;

Совпадающие с промежуточной частотой приемника.

Составляющие особенно опасны, так как контур УРЧ настроен на эту частоту.

Одним из лучших методов борьбы со всеми рассмотренными видами нелинейных искажений является улучшение эффективной избирательности УРЧ.

Для этого необходимо повысить избирательность входной цепи, применять в первых каскадах УРЧ усилительные приборы с линейной характеристикой и не включать первые каскады УРЧ в систему АРУ.

ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ

11.1 Назначение, структурная схема и принцип работы преобразователей частоты

Преобразователем частоты называют устройство, осуществляющее перенос спектра радиосигнала из одной области частот в другую без изменения характера модуляции. Они являются частью супергетеродинного приемника. В результате преобразования получается новое значение частоты , называемой промежуточной . Частота может быть как выше, так и ниже частоты сигнала ; в первом случае происходит преобразование частоты вверх, во втором – вниз.

Как видно из диаграмм напряжений на входе и выходе ПЧ (рисунок 11.1), при преобразовании частоты закон модуляции (в данном случае – амплитудной) не нарушается, а изменяется только частота несущего колебания на выходе преобразователя.

Рисунок 11.1 Временные диаграммы напряжений на входе (а) и выходе ПЧ (б)

Спектр преобразованного колебания (рисунок 11.2) сместился по оси частот влево (для ); при этом характер спектра не изменился.

Рисунок 11.2 Спектр частот на входе (а) и выходе ПЧ (б)

Здесь - частота модулирующего колебания; и - несущие частоты для и .

Для преобразования частоты в радиоприемниках используются линейные цепи с периодически меняющимися параметрами .

Структурная схема преобразования частоты (рисунок 11.3) содержит преобразовательный элемент ПЭ , гетеродин Г и фильтр Ф .

Рисунок 11.3 Структурная схема ПЧ

Режим работы ПЭ периодически во времени меняется под действием напряжения гетеродина с частотой гетеродина . В результате изменяется крутизна ВАХ преобразовательного элемента, что приводит к преобразованию сигнала.

Положим, что к ПЭ со строго квадратичной ВАХ (рисунок 11.4) приложены напряжение гетеродина и некоторое начальное напряжение смещения ; при этом .

Под действием напряжения гетеродина рабочая точка ПЭ начинает периодически изменяться во времени и, как следует из рисунка 11.4, крутизна в рабочей точке также будет периодически меняться от до . Так как , то при квадратичной ВАХ зависимость крутизны от напряжения линейна.

Рисунок 11.4 Вольт-амперная характеристика ПЧ

Следовательно, при косинусоидальном напряжении крутизна изменяется также по косинусоидальному закону и содержит постоянную составляющую и первую гармонику. Тогда

где - постоянная составляющая крутизны ПЭ; - амплитуда первой гармоники крутизны ПЭ.

Ток на выходе ПЭ . Эта формула приближенная, поскольку она не учитывает ток сопротивления нагрузки.

Пусть на входе ПЭ действует сигнал , где - функции времени.

Подставив в выражение для тока значения и , получим

Используя правило перемножения косинусов, запишем

Согласно (11.1), ток на выходе ПЭ содержит составляющие трех частот: частоты сигнала , суммарной частоты и разностной частоты .

Из составляющих выходного тока используют только составляющую разностной частоты (полезная составляющая):

Фильтр на выходе преобразователя частоты выделяет только эту составляющую выходного тока, поэтому напряжение на выходе преобразователя определяется током .

Согласно (11.2), амплитуда полезной составляющей выходного тока пропорциональна амплитуде сигнала , следовательно, при преобразовании частоты закон изменения амплитуды сигнала (амплитудная модуляция) сохраняется.

Фаза тока также соответствует фазе исходного сигнала , т.е. при преобразовании частоты фазовая модуляция сохраняется.

Амплитуда тока зависит от амплитуды гармоники крутизны . При : ; (преобразования по частоте не происходит). Чем больше , тем больше , а следовательно, больше амплитуда тока и амплитуда напряжения на выходе преобразователя.

Преобразователи частоты подразделяют:

В зависимости от вида ПЭ: диодные, транзисторные, интегральные ;

В зависимости от числа ПЭ: простые (один ПЭ), балансные (два ПЭ), кольцевые (четыре ПЭ).

Если , то положение боковых полос сигнала относительно несущей частоты после преобразования частоты не изменяется (неинвертирующий преобразователь частоты ).

Если , то боковые полосы после преобразования меняются местами, нижняя становится верхней, и наоборот (инвертирующий преобразователь частоты ).

Выводы:

1. При преобразовании частоты закон модуляции входного напряжения не нарушается, а изменяется только несущая частота.

2. Для преобразования частоты используются линейные цепи с периодически меняющимися параметрами.

3. Под действием напряжения гетеродина периодически во времени меняется режим работы ПЭ, в результате чего меняется с частотой крутизна ПЭ. При этом ток на выходе ПЭ содержит помимо составляющей с частотой сигнала ряд комбинационных составляющих, одна из которых с частотой (обычно или ), выделяемая фильтром, создает напряжение на выходе преобразователя частоты.

11.2 Общая теория преобразования частоты

При анализе преобразователя частоты по аналогии с резонансными усилителями решают две задачи:

1) определяют выходное напряжение , для чего находят полезную составляющую тока промежуточной частоты, которая совпадает с резонансной частотой фильтра, после чего рассчитывают основные показатели преобразователя -–коэффициент усиления, АЧХ, ФЧХ и т.д.;

2) находят составляющую входного тока преобразователя на частоте сигнала , создающую нагрузку для источника сигнала.

Анализ проведем при следующих допущениях:

1) полагаем, что на ПЭ (рисунок 11.3) действуют три гармонических напряжения:

Напряжения на входном и выходном фильтрах создаются входными и выходными токами различных комбинационных частот. Обычно эти напряжения малы, поскольку сопротивления фильтров для комбинационных частот незначительны;

2) считаем ; , т.е. полагаем ПЭ работающим в линейном режиме относительно напряжения сигнала ; относительно напряжения гетеродина ПЭ всегда работает в нелинейном режиме;

3) ПЭ является безынерционным устройством, не содержащим емкостных и индуктивных элементов; поэтому его ток не зависит от производных или интегралов приложенных к ПЭ напряжений. Для безынерционного ПЭ входной и выходной токи определяются статическими ВАХ:

Составляющая тока не содержит полезной составляющей тока с частотой

Преобразование частоты возможно на любой гармонике крутизны:

Из этих значений используется только одно.

Если при , то преобразование частоты называется простым .

Если при , то преобразование частоты называют комбинационным ; оно возможно из-за появления гармоник крутизны.

Таким образом, из всех составляющих выходного тока только одна с частотой является полезной:

где соответствует (только при составляющая тока имеет промежуточную частоту).

В выражении (11.8) первое слагаемое характеризует преобразование частоты, второе – реакцию фильтра.

Крутизна прямого преобразования по определению крутизны при . Согласно (11.8),

где - коэффициент пропорциональности между амплитудой выходного тока промежуточной частоты и амплитудой напряжения сигнала на входе при короткозамкнутом выходе ПЭ.

Внутренняя проводимость преобразователя частоты по определению, при . Согласно (7.8), внутренняя проводимость преобразователя равна постоянной составляющей внутренней проводимости ПЭ:

Внутренний коэффициент усиления преобразователя

С учетом принятых обозначений

11.3 Частотная характеристика преобразователя

Под АЧХ преобразователя частоты понимают зависимость его коэффициента передачи от частоты входного сигнала при фиксированной частоте гетеродина; частота сигнала изменяется в широких пределах.

Пусть в качестве фильтра преобразователя используется одиночный резонансный контур, настроенный на частоту (рисунок 11.5).

Рисунок 11.5 Эквивалентная схема ПЧ

С изменением при фиксированном значении промежуточная частота меняется.

Рисунок 11.6 Графические зависимости

Графические зависимости , построенные согласно (7.7), показаны на рисунке 11.6,а . При ; при и т.д.

Таким образом, различным значениям соответствуют различные значения , причем значение зависит от номера гармоники крутизны, на которой происходит преобразование частоты. Напряжение на выходном контуре преобразователя появится только при выполнении условия резонанса, т.е. при .

Согласно рисунок6а , условие резонанса выполняется не на одной частоте сигнала, а на нескольких частотах ; следовательно, АЧХ преобразователя имеет несколько подъемов. Каждому подъему соответствует определенная полоса пропускания, через которую на выход приемника могут проходить составляющие спектра сигнала и помех. Такие полосы пропускания называют каналами приема . Каждый канал соответствует своей частоте сигнала. АЧХ преобразователя показана на рисунок60б , форма АЧХ каждого канала зависит от вида фильтра ПЧ.

11.4 Диодные преобразователи частоты