Как составить параметрическое уравнение прямой. Каноническое и параметрическое уравнения прямой

Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим . Эта дополнительная величина в уравнении называется параметр . На самом деле с каждым параметрическим уравнением может быть написано множество уравнений. Мы рассмотрим модуль параметрического уравнения и решение простых параметрических уравнений.

Задача 1 Решите уравнения в отношении к $x$
A) $x + a = 7$
B) $2x + 8a = 4$
C) $x + a = 2a – x$
D) $ax = 5$
E) $a – x = x + b$
F) $ax = 3a$

Решение :

A) $x + a = 7 \Leftrightarrow x = 7 – a$, то есть решение к данному уравнению найдено.
Для различных значений параметров, решения есть $x = 7 – a$

B) $2x + 8a = 4 \Leftrightarrow 2x = 4 - 8a \Leftrightarrow x = 2 – 4a$

C) $x + a = 2a – x \Leftrightarrow x + x = 2a – a \Leftrightarrow 2x = a \Leftrightarrow x = \frac{a}{2}$

D) $ax = 5$, когда а отличается от 0 мы можем разделить обе части на a и мы получим $x = 5$
Если $a = 0$, мы получим уравнение, такое как $0.x = 5$, и которое не имеет решения;

E) $a – x = x + b \Leftrightarrow a – b = x + x \Leftrightarrow 2x = a – b \Leftrightarrow x = \frac{a-b}{2}$

F) Когда a = 0 уравнение ax = 3a равно 0.x = 0
Поэтому, любое x является решением. Если a отличается от 0, тогда
$ax = 3a \Leftrightarrow x = \frac{3a}{a} \Leftrightarrow x = 3$

Задача 2 Если a является параметром, решите уравнение:
A) $(a + 1)x = 2a + 3$
B) $2a + x = ax + 4$
C) $a^2x – x = a$
D) $a^2x + x = a$

Решение :

A) Если $a + 1$ отлично от 0, то есть.. $a \neq -1$,
тогда $x = \frac{2a+3}{a+1}$;
если $a + 1 = 0$, i.e. $a = - 1$
уравнение принимает вид $0\cdot x = (2)\cdot(-1) + 3 \Leftrightarrow$
$0\cdot x = 1$, что не имеет решения;

B) $2a + x = ax + 4 \Leftrightarrow$
$x – ax = 4 - 2a \Leftrightarrow$
$(1 – a)\cdot x = 2(2 – a)$
Если $(1 – a) \neq 0$, то есть a $\neq 1$; решение будет
$x = \frac{2(2 - a)}{(1 - a)}$;
Если $a = 1$ уравнение примет вид $0\cdot x = 2(2 - 1) \Leftrightarrow$
$0\cdot x = 2$, что не имеет решения

C) $a^2x – x = a \Leftrightarrow$
$x(a^2 -1) = a \Leftrightarrow$
$(a - 1)(a + 1)x = a$
Если $a - 1 \neq 0$ и $a + 1 \neq 0$ то есть $a \neq 1, -1$,
решением есть is $x = \frac{a}{(a - 1)(a + 1)}$
Если $a = 1$ or $a = -1$, уравнение принимает вид is $0\cdot x = \pm 1$, что не имеет решения

D) $a^2x + x = a \Leftrightarrow$
$(a^2 + 1)x = a$
В этом случае $a^2 + 1 \neq 0$ для любого $а$, потому что это есть сумма позитивного числа (1) и одного негативного числа
$(a^2 \geq 0)$ поэтому $x = \frac{a}{a^2 + 1}$

Задача 3 Если a and b являются параметрами, решите уравнения:
A) $ax + b = 0$
B) $ax + 2b = x$
C) $(b - 1)y = 1 – a$
D) $(b^2 + 1)y = a + 2$

Решение :

A) $ax + b = 0 \Leftrightarrow ax = -b$
Если $a \neq 0$, тогда решение есть $x = -\frac{b}{a}$.
Если $a = 0, b \neq 0$, уравнение принимает вид $0\cdot x = -b$ и не имеет решения.
Если $a = 0$ и $b = 0$, уравнение принимает вид $0\cdot x = 0$ и любое $x$ является решением;

B) $ax + 2b = x \Leftrightarrow ax – x = -2b \Leftrightarrow (a - 1)x = -2b$
Если $a - 1 \neq 0$, i.e. $a \neq 1$, решение есть is $x = -\frac{2b}{a-1}$
Если $a - 1 = 0$, то есть $a = 1$, и $b \neq 0$, уравнение принимает вид $0\cdot x = - 2b$ и не имеет решения

C) Если $b - 1 \neq 0$, то есть $b \neq 1$,
решением есть $y = \frac{1-a}{b-1}$
Если $b - 1 = 0$, то есть $b = 1$, но $1 – a \neq 0$,
то есть $a \neq 1$, уравнение принимает вид $0\cdot y = 1 – a$ и не имеет решения.
Если $b = 1$ и $a = 1$ уравнение принимает вид $0\cdot y = 0$ и любое $y$ является решением

D) $b^2 + 1 \neq 0$ для любого $b$(почему?), поэтому
$y = \frac{a+2}{b^2}$ является решением уравнения.

Задача $4$ Для каких значений $x$ следующие выражения имеют равные значения:
A) $5x + a$ и $3ax + 4$
B) $2x - 2$ и $4x + 5a$

Решение :

Чтобы получить одинаковые значения мы должны найти решения уравнений
$5x + a = 3ax + 4$ и $2x – 2 = 4x + 5a$

A) $5x + a = 3ax + 4 \Leftrightarrow$
$5x - 3ax = 4 – a \Leftrightarrow$
$(5 - 3a)x = 4 – a$
Если $5 - 3a \neq 0$, т.e. $a \neq \frac{5}{3}$, решения есть $x = \frac{4-a}{5-3a}$
Если $5 - 3a = 0$, т.e. $a = \frac{5}{3}$, уравнение принимает вид $0\cdot x = 4 – \frac{5}{3} \Leftrightarrow$
$0\cdot x = \frac{7}{3}$, что не имеет решения

B) $2x - 2 = 4x + 5a \Leftrightarrow$
$-2 - 5a = 4x - 2x \Leftrightarrow$
$2x = - 2 - 5a \Leftrightarrow$
$x = -\frac{2+5a}{2}$

Задача 5
A) $|ax + 2| = 4$
B) $|2x + 1| = 3a$
C) $|ax + 2a| = 3$

Решение :

A) $|ax + 2| = 4 \Leftrightarrow ax + 2 = 4$ или $ax + 2 = -4 \Leftrightarrow$
$ax = 2$ или $ax = - 6$
Если $a \neq 0$, уравнения примут вид $x = \frac{2}{a}$ or $x = -\frac{6}{a}$
Если $a = 0$, уравнения не имею решения

B) Если $a Если $a > 0$, это эквивалентно $2x + 1 = 3a$
или $2x + 1 = -3a \Leftrightarrow 2x = 3a - 1 \Leftrightarrow x = \frac{3a-1}{2}$ or
$2x = -3a - 1 \Leftrightarrow x = \frac{3a-1}{2} = -\frac{3a-1}{2}$

C) $|ax + 2a| = 3 \Leftrightarrow ax + 2a = 3$ или $ax + 2a = - 3$,
и мы находим $ax = 3 - 2a$ или $ax = -3 - 2a$
Если a = 0, тогда нет решений, если $a \neq 0$
решениями есть: $x = \frac{3-2a}{a}$ и $x = -\frac{3+2a}{a}$

Задача 6 Решите уравнение $2 – x = 2b – 2ax$, где a и b являются действительными параметрами. Найдите, для каких значениях a уравнение имеет в качестве решения натуральное число, если $b = 7$

Решение :

Представим данное уравнение в следующем виде: $(2a - 1)x = 2(b - 1)$
Возможны следующие варианты:
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}$, уравнение имеет единственное решение
$x = \frac{2(b-1)}{2a-1}$
Если $a = \frac{1}{2}$ и $b = 1$, уравнение получает вид $0\cdot x = 0$ и любое $x$ является решением
Если $a = \frac{1}{2}$ и $b \neq 1$, мы получаем $0\cdot x = 2(b - 1)$, где $2(b - 1) \neq 0$
В этом случае уравнение не имеет решения.
Если $b = 7$ и $a \neq \frac{1}{2}$ является единственным решением
$x = \frac{2(7-1)}{2a-1} = \frac{12}{2a-1}$
Если a целое число, тогда $2a - 1$ также есть целым числом и решением есть
$x = \frac{12}{2a-1}$ является натуральным числом когда
$2a - 1$ есть положительным делителем для числа $12$.
Чтобы a было целым числом, делитель числа $12$ должен быть нечетным. Но только $1$ и $3$ являются положительными нечетными числами, на которые делится12
Поэтому $2a - 1 = 3 \Leftrightarrow a = 2$ или $2a - 1 = 1 \Leftrightarrow$
$a = 1 a = 2$ или $2a - 1 = 1 \Leftrightarrow a = 1$

Задача 7 Решите уравнение $|ax - 2 – a| = 4$, где a является параметром. Найдите, для каких значениях а корнями уравнения являются целые отрицательные числа.

Решение :

Из определения модуля мы получаем
$|ax - 2 – x| = 4 \Leftrightarrow ax - 2 – x = 4$ или $ax - 2 – x = - 4$
Из первого равенства мы получаем $x(a - 1) - 2 = 4 \Leftrightarrow$
$(a - 1)x = 4 + 2 \Leftrightarrow (a - 1)x = 6$
Из второго равенства мы получаем $(a - 1)x = -2$
Если $a - 1 = 0$, т.e. $a = 1$, последнее уравнение не имеет решения.
Если $a \neq 1$ мы находим, что $x = \frac{6}{a-1}$ или $x = -\frac{2}{a-1}$
Чтобы эти корни были целыми отрицательными числами, должно выполняться следующее:
Для первого равенство $a - 1$ должно быть отрицательным делителем 6, и для второго - положительным делителям 2
Тогда $a - 1 = -1; -2; -3; - 6$ или $a - 1 = 1; 2$
Мы получаем $a - 1 = -1 \Leftrightarrow a = 0; a - 1 = -2 \Leftrightarrow$
$a = -1; a - 1 = -3 \Leftrightarrow a = -2; a - 1 = -6 \Leftrightarrow a = -5$
или $a - 1 = 1 \Leftrightarrow a = 2; a - 1 = 2 \Leftrightarrow a = 3$
Тогда $a = -5; -2; -1; 0; 2; 3$ являются решениями задачи.

Задача 8 Решите уравнение:
A) $3ax – a = 1 – x$, где a это параметр;
B) $2ax + b = 2 + x$, где a и b являются параметрами

Решение :

A) $3ax + x = 1 + a \Leftrightarrow (3a + 1)x = 1 + a$.
Если $3a + 1 \neq 0$, т.e. $a \neq -11 /3 /3$ , решение есть
$x = \frac{1+a}{3a+1}$
Если $a = -\frac{1}{3}$ уравнение принимает вид $0\cdot x = \frac{1.1}{3}$, что не имеет решения.

B) $2ax – x = 2 – b \Leftrightarrow (2a - 1)x = 2 – b$
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}, x = \frac{2-b}{2a-1}$ является решением.
Если $a = \frac{1}{2}$ уравнение принимает вид $0.x = 2 – b$
Тогда, если $b = 2$, любое x является решением, если $b \neq 2$, уравнение не имеет решения.

Задача 9 Дано уравнение $6(kx - 6) + 24 = 5kx$ , где к - целое число. Найдите, для каких значений k уравнение:
A) имеет корень $-\frac{4}{3}$
B) не имеет решения;
C) имеет корень как натуральное число.

Решение :

Перепишем уравнение в виде $6kx - 36 + 24 = 5kx \Leftrightarrow kx = 12$

A) Если $x = -\frac{4}{3}$, для k мы получим уравнение $-\frac{4}{3k} = 12 \Leftrightarrow k = - 9$

B) Уравнение $kx = 12$ не имеет решения, когда $k = 0$

C) Когда $k \neq 0$ является корнем $x = \frac{12}{k}$ и это натуральное число, если k есть целым положительным числом, на которое делится 12, т.e. $k = 1, 2, 3, 4, 6, 12$

Задача 10 Решите уравнение:
A) $2ax + 1 = x + a$, где a является параметром;
B) $2ax + 1 = x + b$, где a и b являются параметрами.

Решение :

A) $2ax + 1 = x + a \Leftrightarrow 2ax – x = a - 1 \Leftrightarrow$
$(2a - 1)x = a - 1$
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}$, единственным решением уравнения является
$x = \frac{a-1}{2a-1}$
Если $2a - 1 = 0$, т.e. $a = \frac{1}{2}$, уравнение принимает вид
$0.x = \frac{1}{2}- 1 \Leftrightarrow 0.x = -\frac{1}{2}$, что не имеет решения

B) $2ax + 1 = x + b \Leftrightarrow$
$2ax – x = b - 1 \Leftrightarrow$
$(2a - 1)x = b - 1$
Если $2a - 1 \neq 0$, т.e. $a \neq \frac{1}{2}$, решением является
$x = \frac{b-1}{2a-1}$
Если $a = \frac{1}{2}$, уравнения эквивалентно $0.x = b - 1$
Если b = 1 любое x является решением, если $b \neq 1$ тогда нет решения.

Задача 11 Дано уравнение $3(ax - 4) + 4 = 2ax$, где параметром является целым числом. Найдите, для каких значений a уравнение в качестве корней имеет:
А) $\left(-\frac{2}{3}\right)$
B) целое число
C) натуральное число

Решение :

A) Если $x = -\frac{2}{3}$ есть решением уравнения, тогда должно быть истинным
$3\left + 4 = 2a\left(-\frac{2}{3}\right) \Leftrightarrow$
$-2a - 12 + 4 = -\frac{4a}{3} \Leftrightarrow$
$\frac{4a}{3} - 2a = 8 \Leftrightarrow \frac{4a-6a}{3} = 8 \Leftrightarrow$
$-\frac{2a}{3} = 8 \Leftrightarrow a = -12$

B) $3(ax - 4) + 4 = 2ax \Leftrightarrow 3ax - 2ax = 12 - 4 \Leftrightarrow ax = 8$
Если $a \neq 0$ решением является $x = \frac{8}{a}$, это целое число, если а является делимым числа $8$.
Поэтому; $±2; ±4; ±8$
Если $a=0$, уравнение не имеет решения

C) Чтобы получить натуральное (целое положительное) число для этого решения $x=\frac{8}{a}$ число должно равняться: $a=1, 2, 4, 8$

Задача 12 Дано уравнение $2 – x = 2b – 2ax$, где $a$ и $b$ - параметры. Найдите, для каких значений a уравнение имеет решения в виде натурального числа, если $b = 7$

Решение :

В уравнение мы подставляем $b = 7$ и получаем $2 – x = 2.7 - 2ax \Leftrightarrow$
$2ax – x = 14 – 2 \Leftrightarrow (2a - 1)x = 12$
Если $2a -1 \neq 0$, т.e. $a \neq \frac{1}{2}$, уравнение примет вид
$x = \frac{12}{2a-1}$ и это будет натуральное число, если знаменатель $2a - 1$ есть положительным делимым $12$ и кроме того, чтобы оно было целым числом, необходимо, чтобы $2a - 1$ было нечетным числом.
Поэтому $2a - 1$ может быть $1$ или $3$
Из $2a - 1 = 1 \Leftrightarrow 2a = 2 \Leftrightarrow a = 1$ и $2a - 1 = 3$
$\Leftrightarrow 2a = 4 \Leftrightarrow a = 2$

Задача 13 Дана функция $f(x) = (3a - 1)x - 2a + 1$, где a - параметр. Найдите, для каких значений a график функции:
А) пересекает ось абсцисс;
B) пересекает ось абсцисс

Решение :

Чтобы график функции пересёк ось абсцисс, необходимо, чтобы
$(3a - 1)\cdot x -2a + 1 = 0$ имело решения и не имело решения для непересечения оси абсцисс.
С уравнения мы получаем $(3a - 1)x = 2a - 1$
Если $3a - 1 \neq 0$, т.e. $a \neq \frac{1}{3}$, уравнение имеет решения
$x = \frac{2a-1}{3a-1}$, поэтому график функции пересекает ось абсцисс.
Если $a = \frac{1}{3}$, мы получаем $0.x = \frac{2}{3} - 1 \Leftrightarrow 0.x = -\frac{1}{3}$, что не имеет решения.
Поэтому, если $a = \frac{1}{3}$, график функций не пересекает ось абсцисс.

Задача 14 Решите параметрическое уравнение:
A) $|x -2| = a$
B) $|ax -1| = 3$
C) $|ax - 1| = a - 2$

Решение :

A) Если $a 0$ мы получаем:
$|x - 2| = a \Leftrightarrow x - 2 = a$ или $x - 2 = -a$
Из $x - 2 = a \Rightarrow x = a + 2$, и из
$x - 2 = -a \Rightarrow x = 2 – a$
Если $a = 0$, тогда $x - 2 = 0$ или $x = 2$

B) $|ax - 1| = 3 \Leftrightarrow ax - 1 = 3$ или $ax - 1 = -3$
откуда $ax = 4$ или $ax = - 2$
Если $a \neq 0$ решения: $x = \frac{4}{a}$ or $x = -\frac{2}{a}$
Если $a = 0$, здесь нет решения

C) Если $a - 2 Если $a - 2 > 0$, т.e. $a > 2$ мы получаем
$|ax - 1| = a - 2 \Leftrightarrow ax - 1 = a - 2$ или $ax - 1 = 2 – а$
Итак, мы получаем $ax = a - 1$ или $ax = 3 – a$
Потому что $a > 2, a \neq 0$, therefore
$x = \frac{a-1}{a}$ или $x = \frac{3-a}{a}$.
Если $a = 2$, уравнения эквивалентно
$2x - 1 = 0 \Leftrightarrow 2x = 1 \Leftrightarrow x = \frac{1}{2}$

Задача 15 Найдите, для каких значений параметра m (a), два уравнения эквивалентны:
A) $\frac{x+m}{2} = 1 – m$ и $(-x - 1) ^2 - 1 = x^2$
B) $\frac{x+m}{2} = 1 – m$ и $\frac{x-m}{3} = 1 - 2m$
C) $|3 – x| + x^2 -5x + 3 = 0$ и $ax + 2a = 1 + x$, если $x > 3$

Решение :

A) Решим второе уравнение. Запишем его в виде:
$(-x - 1)^2 - 1 = x^2 \Leftrightarrow$
$[(-1)(x + 1) ]^2 - 1 = x^2 \Leftrightarrow$
$x^2 + 2x + 1 - 1 = x^2 \Leftrightarrow$
$2x = 0 \Leftrightarrow x = 0$
Для первого мы получим
$\frac{x+m}{2} = 1 – m \Leftrightarrow x + m = 2 - 2m \Leftrightarrow x = 2 - 3m$
Эти два уравнения эквивалентны, если они имеют одинаковые корни, т.e.
$2 - 3m = 0 \Leftrightarrow$ $m = \frac{2}{3}$

B) Для первого уравнения решением есть $х = 2 - 3m$ и для второго мы получим
$x – m = 3 - 6m \Leftrightarrow$ $x = 3 – 5m$
Они имеют одинаковые корни, когда
$2 - 3m = 3 - 5m \Leftrightarrow 5m - 3m = 3 - 2 \Leftrightarrow 2m = 1 \Leftrightarrow m = \frac{1}{2}$

C) Так как $x > 3, 3 – x $|3 – x| = -(3 – x) = x - 3$
Первое уравнение будет выглядеть так: $x - 3 + x^2 – 5x + 3 = 0 \Leftrightarrow$
$x^2 - 4x – 0 \Leftrightarrow x(x - 4) = 0 \Leftrightarrow$
$x = 0$ или $x = 4$
С условием, что $х> 3$, поэтому только $x = 4$ есть решением. Для второго уравнения мы получаем
$ax – x = 1 - 2a \Leftrightarrow (a - 1)x = 1 - 2a$
Если $a - 1 = 0$, здесь нет решения (Почему?), если $a - 1 \neq 0$, i.e. $a \neq 1$, решением есть
$x = \frac{1-2a}{a-1}$ Эти два уравнения будут равны, если $4 = \frac{1-2a}{a-1} \Leftrightarrow$ $4(a - 1) = 1 - 2a \Leftrightarrow 4a + 2a = 1 + 4 \Leftrightarrow 6a = 5 \Leftrightarrow a = \frac{5}{6}$

Пусть l - некоторая прямая пространства. Как и в планиметрии, любой вектор

а =/= 0, коллинеарный прямой l , называется направляющим вектором этой прямой.

Положение прямой в пространстве полностью определяется заданием направляющего вектора и точки, принадлежащей прямой.

Пусть прямая l с направляющим вектором а проходит через точку M 0 , а М - произвольная точка пространства. Очевидно, что точка М (рис. 197) принадлежит прямой l тогда и только тогда, когда вектор \(\overrightarrow{M_0 M}\) коллинеарен вектору а , т. е.

\(\overrightarrow{M_0 M}\) = ta , t \(\in \) R . (1)

Если точки М и M 0 заданы своими радиус-векторами r и r 0 (рис. 198) относительно некоторой точки О пространства, то \(\overrightarrow{M_0 M}\) = r - r 0 , и уравнение (1) принимает вид

r = r 0 + ta , t \(\in \) R . (2)

Уравнения (1) и (2) называются векторно-параметрическими уравнениями прямой. Переменная t в векторно-параметрических уравнениях прямой называется параметром .

Пусть точка M 0 прямой l и направляющий вектор а заданы своими координатами:

M 0 (х 0 ; у 0 , z 0), а = (а 1 ; а 2 ; а 3).

Тогда, если (х; у; z ) - координаты произвольной точки М прямой l , то

\(\overrightarrow{M_0 M} \) = (х - х 0 ; у - у 0 ; z - z 0)

и векторное уравнение (1) равносильно следующим трем уравнениям:

х - х 0 = 1 , у - у 0 = 2 , z - z 0 = 3

$$ \begin{cases} x = x_0 + ta_1 \\ y = y_0 + ta_2 \\ z = z_0 + ta_3, \;\;t\in R\end{cases} (3)$$

Уравнения (3) называются параметрическими уравнениями прямой в пространстве.

Задача 1. Написать параметрические уравнения прямой, проходящей через точку

M 0 (-3; 2; 4) и имеющей направляющий вектор а = (2; -5; 3).

В данном случае х 0 = -3, у 0 = 2, z 0 = 4; а 1 = 2; а 2 = -5; а 3 = 3. Подставив эти значения в формулы (3), получим параметрические уравнения данной прямой

$$ \begin{cases} x = -3 - 2t \\ y = 2 - 5t \\ z = 4 + 3t, \;\;t\in R\end{cases} $$

Исключим параметр t из уравнений (3). Это можно сделать, так как а =/= 0, и поэтому одна из координат вектора а заведомо отлична от нуля.

Пусть сначала все координаты отличны от нуля. Тогда

$$ t=\frac{x-x_0}{a_1},\;\;t=\frac{y-y_0}{a_2},\;\;t=\frac{z-z_0}{a_3} $$

и, следовательно,

$$ \frac{x-x_0}{a_1}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3} \;\; (4)$$

Эти уравнения называются каноническими уравнениями прямой .

Заметим, что уравнения (4) образуют систему двух уравнений с тремя переменными х, у и z.

Если в уравнениях (3) одна из координат вектора а , например а 1 равна нулю, то, исключив параметр t , снова получим систему двух уравнений с тремя переменными х, у и z :

\(x=x_0, \;\; \frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}\)

Эти уравнения также называются каноническими уравнениями прямой. Для единообразия их также условно записывают в виде (4)

\(\frac{x-x_0}{0}=\frac{y-y_0}{a_2}=\frac{z-z_0}{a_3}\)

считая, что если знаменатель равен нулю, то равен нулю и соответствующий числитель. Эти уравнения являются уравнениями прямой, проходящей через точку M 0 (х 0 ; у 0 , z 0) параллельно координатной плоскости yOz , так как этой плоскости параллелен ее направляющий вектор (0; а 2 ; а 3).

Наконец, если в уравнениях (3) две координаты вектора а , например а 1 и а 2 равны нулю, то эти уравнения принимают вид

х = х 0 , y = у 0 , z = z 0 + ta 3 , t \(\in \) R .

Это уравнения прямой, проходящей через точку M 0 (х 0 ; у 0 ; z 0) параллельно оси Oz . Для такой прямой х = х 0 , y = у 0 , a z - любое число. И в этом случае для единообразия уравнения прямой можно записывать (с той же оговоркой) в виде (4)

\(\frac{x-x_0}{0}=\frac{y-y_0}{0}=\frac{z-z_0}{a_3}\)

Таким образом, для любой прямой пространства можно написать канонические уравнения (4), и, наоборот, любое уравнение вида (4) при условии, что хотя бы один из коэффициентов а 1 , а 2 , а 3 не равен нулю, задает некоторую прямую пространства.

Задача 2. Написать канонические уравнения прямой, проходящей через точку M 0 (- 1; 1, 7) параллельно вектору а = (1; 2; 3).

Уравнения (4) в данном случае записываются слeдующим образом:

\(\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-7}{3}\)

Выведем уравнения прямой, проходящей через две данные точки M 1 (х 1 ; у 1 ; z 1) и

M 2 (х 2 ; у 2 ; z 2). Очевидно, что за направляющий вектор этой прямой можно взять вектор a = (х 2 - х 1 ; у 2 - у 1 ; z 2 - z 1), а за точку М 0 , через которую проходит прямая, например, точку M 1 . Тогда уравнения (4) запишутся так:

\(\frac{x-x_1}{x_2 - x_1}=\frac{y-y_1}{y_2 - y_1}=\frac{z-z_1}{z_2 - z_1}\) (5)

Это и есть уравнения прямой, проходящей через две точки M 1 (х 1 ; у 1 ; z 1) и

M 2 (х 2 ; у 2 ; z 2).

Задача 3. Написать уравнения прямой, проходящей через точки M 1 (-4; 1; -3) и M 2 (-5; 0; 3).

В данном случае х 1 = -4, у 1 = 1, z 1 = -3, х 2 = -5, у 2 = 0, z 2 = 3. Подставив эти значения в формулы (5), получим

\(\frac{x+4}{-1}=\frac{y-1}{-1}=\frac{z+3}{6}\)

Задача 4. Написать уравнения прямой, проходящей через точки M 1 (3; -2; 1) и

M 2 (5; -2; 1 / 2).

После подстановки координат точек M 1 и M 2 в уравнения (5) получим

\(\frac{x-3}{2}=\frac{y+2}{0}=\frac{z-1}{-\frac{1}{2}}\)

УГОЛ МЕЖДУ ПЛОСКОСТЯМИ

Рассмотрим две плоскости α 1 и α 2 , заданные соответственно уравнениями:

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α 1 и α 2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

.

Пример. Определить угол между плоскостями x +2y -3z +4=0 и 2x +3y +z +8=0.

Условие параллельности двух плоскостей.

Две плоскости α 1 и α 2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит .

Итак, две плоскости параллельны друг другу тогда и только тогда, когда коэффициенты при соответствующих координатах пропорциональны:

или

Условие перпендикулярности плоскостей.

Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .

Таким образом, .

Примеры.

ПРЯМАЯ В ПРОСТРАНСТВЕ.

ВЕКТОРНОЕ УРАВНЕНИЕ ПРЯМОЙ.

ПАРАМЕТРИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называется направляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М 1 (x 1 , y 1 , z 1), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы и коллинеарны, поэтому найдётся такое число t , что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М , лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что , и отсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x , y и z и точка М перемещается по прямой.


КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М 1 (x 1 , y 1 , z 1) – точка, лежащая на прямой l , и – её направляющий вектор. Вновь возьмём на прямой произвольную точку М(x,y,z) и рассмотрим вектор .

Ясно, что векторы и коллинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметр t . Действительно, из параметрических уравнений получаем или .

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюда x = 2 + 3t , y = –1 + 2t , z = 1 –t .

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox . Тогда направляющий вектор прямой перпендикулярен Ox , следовательно, m =0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t , получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осям Ox и Oy или параллельная оси Oz .

Примеры.

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагая z = 0:

Решив эту систему, найдем точку M 1 (1;2;0).

Аналогично, полагая y = 0, получим точку пересечения прямой с плоскостью xOz :

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М 1 на прямой и направляющий вектор прямой.

Координаты точки М 1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y = 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l : .


УГОЛ МЕЖДУ ПРЯМЫМИ

Углом между прямыми в пространстве будем называть любой из смежных углов, образованных двумя прямыми, проведёнными через произвольную точку параллельно данным.

Пусть в пространстве заданы две прямые:

Очевидно, что за угол φ между прямыми можно принять угол между их направляющими векторами и . Так как , то по формуле для косинуса угла между векторами получим

Лекция № 7

Плоскость и прямая в пространстве

проф. Дымков М.П.

1. Параметрическое уравнение прямой

Пусть даны точка M 0 (x 0 , y 0 , z 0 ) на прямой и вектор s = (l ,m ,n ) , лежащий на

этой прямой (или ей параллельной). Вектор s называют еще направляющим вектором прямой .

Этими условиями однозначно определяется прямая в пространстве. Найдем ее

уравнение. Возьмем произвольную точку M (x , y , z ) на прямой. Ясно, что векторы

M 0 M (x − x 0 , y − y 0 , z − z 0 ) и s коллинеарны.

Следовательно, M 0 M = t s − есть векторное уравнение прямой.

В координатной записи последнее уравнение имеет следующее параметрическое представление

x = x0 + t l ,

y = y0 + tm ,

z = z0 + tn ,

−∞ < t < +∞,

где t – «пробегает»

промежуток (−∞ ,∞ ) ,

(т.к. точка M (x , y , z ) должна

«пробегать»

всю прямую).

2. Каноническое уравнение прямой

Исключив параметр t из предыдущих уравнений, имеем

x − x

y − y

z − z

T −

каноническое уравнение прямой.

3. Угол между прямыми. Условия « » и « » двух прямых

Пусть даны д ве прямые

x − xi

y − yi

z − zi

i = 1,2.

Определение.

Углом между прямыми L 1 и L 2

назовем любой угол из

двух углов, образованными двумя прямыми, соответственно параллельными данной и проходящими через одну точку (для чего возможно требуется совершить параллельный перенос одной из прямых).

Из определения следует, что один из углов равен углу ϕ между

направляющими векторами прямых

= (l 1 ,m 1 ,n 1 )

= (l 2 ,m 2 ,n 2 ) , [а второй угол

тогда будет равен (π − φ ) ]. Тогда угол определяется из соотношения

cosφ =

l 1 2 + m 1 2 + n 1 2

l 2 2 + m 2 2 + n 2 2

Прямые параллельны , если s и s

коллинеарны

Прямые перпендикулярны s 1 s 2 l 1 l 2 + m 1 m 2 + n 1 n 2 = 0 .

4. Угол между прямой и плоскостью. Условия « » и « » прямой и

плоскости

Пусть прямая L задана своим каноническим уравнением x − l x 0 = y − m y 0 = z − n z 0 ,

а плоскость P – уравнением

Ax + By + Cz + D = 0.

Определение. Углом между прямой L

и плоскостью р называется острый угол между прямой L и ее проекцией на плоскость.

Из определения (и рисунка) следует, что искомый угол ϕ является дополнительным (до прямого угла) к углу между вектором нормали n (A , B ,C ) и

направляющим вектором s (l ,m ,n ) .

Al + Bm + Cn

−φ

Sin φ =

A 2 + B 2 + C 2 l 2 + m 2 + n 2

(. берется, чтобы получить острый угол).

Если L Р , то тогда s n (s ,n ) = 0

Al + Bm + Cn = 0 −

условие « ».

Если L Р , то тогда s коллинеарно n

C −

условие « ».

5. Точки пересечения прямой и плоскости

L : x = x0 + l , t ,

y = y0 + m t , z = z0 + n t ;

P : Ax + By + Cz + D = 0 .

Подставив выражения для х , у , z в уравнение плоскости и преобразовав,

t = − Ax 0 + By 0 + Cz 0 + D .

Al + Bm + Cn

Теперь, если подставить найденное «t » в параметрические уравнения прямой, то найдем искомую точку пересечения

Лекция № 8-9

Основы математического анализа

проф. Дымков М.П.

Одной из основных операций математического анализа является операция предельного перехода, которая встречается в курсе в различных формах. Мы начнем с самой простейшей формы операции предельного перехода, основанной на понятии предела так называемой числовой последовательности. Это облегчит нам введение и другой весьма важной формы операции предельного перехода – предела функции. В последующем конструкции предельных переходов будут использоваться в построении дифференциального и интегрального исчисления.

Бесконечно малые и бесконечно большие последовательности

Связь бесконечно больших и бесконечно малых последовательностей.

Простейшие свойства бесконечно малых последовательностей

Предел последовательности.

Свойства сходящихся последовательностей

Арифметические операции над сходящимися последовательностями

Монотонные последовательности

Критерий сходимости Коши

Число е и его экономическая иллюстрация.

Применение пределов в экономических расчетах

§ 1. Числовые последовательности и простейшие свойства

1. Понятие числовой последовательности. Арифметические операции над последовательностями

Числовые последовательности представляют собой бесконечные множества чисел. Примеры последовательностей известны из школы:

1) последовательность всех членов бесконечной арифметической и геометрической прогрессий;

2) последовательность периметров правильных n -угольников, вписанных в данную окружность;

3) последовательность чисел

приближающих число

будем называть числовой последовательностью (или просто последовательностью).

Отдельные числа x 3 , x 5 , x n будем называть элементами или членами последовательности (1). Символ x n называют общим или n -м членом данной последовательности. Придавая значение n = 1, 2, … в общем члене x n мы получаем, соответственно, первый x 1 , второй x 2 и т.д. члены.

Последовательность считается заданной (см. Опр.), если указан способ получения любого ее элемента. Часто последовательность задают формулой для общего члена последовательности.

Для сокращения записи последовательность (1) иногда записывают как

{ x n } . Например,

означает последовательность 1,

{ 1+ (− 1)n } имеем

0, 2, 0, 2, … .

Структура общего члена (его формула) может быть сложной. Например,

n N.

x n =

n-нечетное

Иногда последовательность задается так называемыми рекуррентными формулами , т.е. формулами, позволяющими находить последующие члены последовательности по известным предыдущим.

Пример (числа Фибоначчи). Пусть x 1 = x 2 = 1 и задана рекуррентная формула x n = x n − 1 + x n − 2 для n = 3, 4, … . Тогда имеем последовательность 1, 1,

2, 3, 5, 8, … (числа Леонардо из Пизы по прозвищу Фибоначчи). Геометрически числовую последовательность можно изобразить на чис-

ловой оси в виде последовательности точек, координаты которых равны соот-

ветствующим членам последовательности. Например, { x n } = 1 n .

Лекция № 8-9 Основы математического анализа проф. Дымков М.П. 66

Рассмотрим наряду с последовательностью { x n } еще одну последовательность { y n } : y 1 , y 2 , y ,n (2).

Определение. Суммой (разностью, произведением, частным) последо-

вательностей { xn } и { yn } называется последовательность { zn } , члены кото-

образованы по

z n = x n + y n

X − y

≠ 0

Произведением последовательности { xn } на число c R называется последовательность { c xn } .

Определение. Последовательность { xn } называется ограниченной

сверху (снизу), если существует вещественное число М (m), такое что каждый элемент этой последовательности xn удовлетворяет неравен-

ству xn ≤ M (xn ≥ m) . Последовательность называется ограниченной, если она ограничена и сверху и снизу m ≤ xn ≤ M . Последовательность xn называ-

ется неограниченной, если для положительного числа А (сколь угодно большего) найдется хотя бы один элемент последовательности xn , удовлетворя-

ющий неравенству xn > A.

{ x n } = { 1n } − ограничена, т.к. 0 ≤ x n ≤ 1.

{ x n } = { n } − ограничена снизу 1, но является неограниченной.

{ x n } = { − n } − ограничена сверху (–1), но также неограниченная.

Определение. Последовательность { x n } называется бесконечно малой ,

если для любого положительного вещественного числа ε (сколь бы малым его не взяли) существует номер N , зависящий, вообще говоря от ε , (N = N (ε )) такой, что при всех n ≥ N выполняется неравенство x n < ε .

Пример. { x n } = 1 n .

Определение. Последовательность { xn } называется бесконечно боль-

шой , если для положительного вещественного числа А (какое бы большое оно не было) найдется номер N (N = N(A)) такой, что при всех n ≥ N выпол-

няется неравенство xn > A.

Прямая вместе с точкой являются важными элементами геометрии, с помощью которых строятся многие фигуры в пространстве и на плоскости. В данной статье подробно рассматривается параметрическое а также его связь с другими типами уравнений для этого геометрического элемента.

Прямая и уравнения для ее описания

Прямая в геометрии представляет собой совокупность точек, которые соединяют произвольные две точки пространства отрезком с наименьшей длиной. Этот отрезок является частью прямой. Любые другие кривые, соединяющие зафиксированные две точки в пространстве, будут иметь большую длину, поэтому прямыми не являются.

На рисунке выше показаны две черные точки. Синяя линия, соединяющая их, является прямой, а красная - кривой. Очевидно, что длина красной линии между черными точками больше, чем синей.

Существуют несколько видов уравнений прямой, с помощью которых можно описать прямую в трехмерном пространстве или в двумерном. Ниже приведены названия этих уравнений:

  • векторное;
  • параметрическое;
  • в отрезках;
  • симметричное или каноническое;
  • общего типа.

В данной статье рассмотрим параметрическое уравнение прямой, однако выведем его из векторного. Также покажем связь параметрического и симметричного или канонического уравнений.

Уравнение векторное

Понятно, что все приведенные типы уравнений для рассматриваемого геометрического элемента связаны между собой. Тем не менее векторное уравнение является базовым для всех них, поскольку оно непосредственно следует из определения прямой. Рассмотрим, как оно вводится в геометрию.

Допустим, дана точка в пространстве P(x 0 ; y 0 ; z 0). Известно, что эта точка принадлежит прямой. Сколько прямых можно провести через нее? Бесконечное множество. Поэтому для того, чтобы можно было провести единственную прямую, необходимо задать направление последней. Направление, как известно, определяется вектором. Обозначим его v¯(a; b; c), где символы в скобках - это его координаты. Для каждой точки Q(x; y; z), которая находится на рассматриваемой прямой, можно записать равенство:

(x; y; z) = (x 0 ; y 0 ; z 0) + α × (a; b; c)

Здесь символ α является параметром, принимающим абсолютно любое действительное значение (умножение вектора на число может изменить только его модуль или направление на противоположное). Это равенство называется векторным уравнением для прямой в трехмерном пространстве. Изменяя параметр α, мы получаем все точки (x; y; z), которые образуют эту прямую.

Стоящий в уравнении вектор v¯(a; b; c) называется направляющим. Прямая не имеет конкретного направления, а ее длина является бесконечной. Эти факты означают, что любой вектор, полученный из v¯ с помощью умножения на действительное число, также будет направляющим для прямой.

Что касается точки P(x 0 ; y 0 ; z 0), то вместо нее в уравнение можно подставить произвольную точку, которая лежит на прямой, и последняя при этом не изменится.

Рисунок выше демонстрирует прямую (синяя линия), которая задана в пространстве через направляющий вектор (красный направленный отрезок).

Не представляет никакого труда получить подобное равенство для двумерного случая. Используя аналогичные рассуждения приходим к выражению:

(x; y) = (x 0 ; y 0) + α × (a; b)

Видим, что оно полностью такое же, как и предыдущее, только используются две координаты вместо трех для задания точек и векторов.

Уравнение параметрическое

Сначала получим в пространстве параметрическое уравнение прямой. Выше, когда записывалось векторное равенство, уже упоминалось о параметре, который в нем присутствует. Чтобы получить параметрическое уравнение, достаточно раскрыть векторное. Получаем:

x = x 0 + α × a;

y = y 0 + α × b;

z = z 0 + α × c

Совокупность этих трех линейных равенств, в каждом из которых имеется одна переменная координата и параметр α, принято называть параметрическим уравнением прямой в пространстве. По сути, мы не сделали ничего нового, а просто явно записали смысл соответствующего векторного выражения. Отметим лишь один момент: число α, хотя и является произвольным, но оно для всех трех равенств одинаковое. Например, если α = -1,5 для 1-го равенства, то такое же его значение следует подставить во второе и в третье равенства при определении координат точки.

Параметрическое уравнение прямой на плоскости подобно таковому для пространственного случая. Оно записывается в виде:

x = x 0 + α × a;

y = y 0 + α × b

Таким образом, чтобы составить параметрическое уравнение прямой, следует записать в явном виде векторное уравнение для нее.

Получение уравнения канонического

Как выше было отмечено, все уравнения, задающие прямую в пространстве и на плоскости, получаются одно из другого. Покажем, как получить из параметрического уравнения прямой каноническое. Для пространственного случая имеем:

x = x 0 + α × a;

y = y 0 + α × b;

z = z 0 + α × c

Выразим параметр в каждом равенстве:

α = (x - x 0) / a;

α = (y - y 0) / b;

α = (z - z 0) / c

Поскольку левые части являются одинаковыми, тогда правые части равенств тоже равны друг другу:

(x - x 0) / a = (y - y 0) / b = (z - z 0) / c

Это и есть каноническое уравнение для прямой в пространстве. Значение знаменателя в каждом выражении является соответствующей координатой Значения в числителе, которые вычитаются из каждой переменной, представляют собой координаты точки, принадлежащей этой прямой.

Соответствующее уравнение для случая на плоскости примет вид:

(x - x 0) / a = (y - y 0) / b

Уравнение прямой через 2 точки

Известно, что две фиксированные точки как на плоскости, так и в пространстве однозначно задают прямую. Предположим, что заданы две следующие точки на плоскости:

Как составить уравнение прямой через них? Для начала следует определить направляющий вектор. Его координаты имеют следующие значения:

PQ¯(x 2 - x 1 ; y 2 - y 1)

Теперь можно записать уравнение в любом из трех видов, которые были рассмотрены в пунктах выше. Например, параметрическое уравнение прямой принимает вид:

x = x 1 + α × (x 2 - x 1);

y = y 1 + α × (y 2 - y 1)

В канонической форме можно переписать его так:

(x - x 1) / (x 2 - x 1) = (y - y 1) / (y 2 - y 1)

Видно, что в каноническое уравнение входят координаты обеих точек, причем в числителе можно менять эти точки. Так, последнее уравнение можно переписать следующим образом:

(x - x 2) / (x 2 - x 1) = (y - y 2) / (y 2 - y 1)

Все записанные выражения называются уравнениями прямой через 2 точки.

Задача с тремя точками

Даны координаты следующих трех точек:

Необходимо определить, лежат эти точки на одной прямой или нет.

Решать эту задачу следует так: сначала составить уравнение прямой для любых двух точек, а затем подставить в него координаты третьей и проверить, удовлетворяют ли они полученному равенству.

Составляем уравнение через M и N в параметрической форме. Для этого применим полученную в пункте выше формулу, которую обобщим на трехмерный случай. Имеем:

x = 5 + α × (-3);

y = 3 + α × (-1);

z = -1 + α × 1

Теперь подставим в эти выражения координаты точки K и найдем значение параметра альфа, который им соответствует. Получаем:

1 = 5 + α × (-3) => α = 4/3;

1 = 3 + α × (-1) => α = 4;

5 = -1 + α × 1 => α = -4

Мы выяснили, что все три равенства будут справедливы, если каждое из них примет отличающееся от других значение параметра α. Последний факт противоречит условию параметрического уравнения прямой, в котором α должны быть равны для всех уравнений. Это означает, что точка K прямой MN не принадлежит, а значит, все три точки на одной прямой не лежат.

Задача на параллельность прямых

Даны два уравнения прямых в параметрическом виде. Они представлены ниже:

x = -1 + 5 × α;

x = 2 - 6 × λ;

y = 4 - 3,6 × λ

Необходимо определить, являются ли прямые параллельными. Проще всего определить параллельность двух прямых с использованием координат направляющих векторов. Обращаясь к общей формуле параметрического уравнения в двумерном пространстве, получаем, что направляющие вектора каждой прямой будут иметь координаты:

Два вектора являются параллельными, если один из них можно получить путем умножения другого на некоторое число. Разделим попарно координаты векторов, получим:

Это означает что:

v 2 ¯ = -1,2 × v 1 ¯

Направляющие вектора v 2 ¯ и v 1 ¯ параллельны, значит, прямые в условии задачи тоже являются параллельными.

Проверим, не являются ли они одной и той же прямой. Для этого нужно подставить координаты любой точки в уравнение для другой. Возьмем точку (-1; 3), подставим ее в уравнение для второй прямой:

1 = 2 - 6 × λ => λ = 1/2;

3 = 4 - 3,6 × λ => λ ≈ 0,28

То есть прямые являются разными.

Задача на перпендикулярность прямых

Даны уравнения двух прямых:

x = 2 + 6 × λ;

y = -2 - 4 × λ

Перпендикулярны ли эти прямые?

Две прямые будут перпендикулярны, если скалярное произведение их направляющих векторов равно нулю. Выпишем эти вектора:

Найдем их скалярное произведение:

(v 1 ¯ × v 2 ¯) = 2 × 6 + 3 × (-4) = 12 - 12 = 0

Таким образом, мы выяснили, что рассмотренные прямые перпендикулярны. Они изображены на рисунке выше.