Перспективные солнечные панели российского производства. Самые мощные солнечные панели Панели от ЗАО «Телеком-СТВ»

Ученые из МИСиС разработали гибкую солнечную батарею втрое дешевле кремниевых панелей

Источник: http://tass.ru/nauka/3193630

МОСКВА, 11 апреля. /ТАСС/. Ученые из Научно-исследовательского технологического университета «МИСиС» совместно с коллегами из университета Техаса в Далласе разработали гибкую солнечную батарею на основе металло-органического соединения, стоимость которой по меньшей мере втрое ниже кремниевых панелей, сообщает пресс-служба университета.

Разработанная учеными НИТУ «МИСиС» гибкая солнечная батарея

«Группа ученых НИТУ «МИСиС» под руководством профессора Анвара Захидова представила технологию создания тонкопленочного фотоэлемента на основе гибридного металл- органического соединения — перовскита, позволяющего преобразовывать энергию солнечного излучения в электрическую с КПД выше 15%, при планируемых показателях более 20%… На сегодняшний день расчетная стоимость квадратного метра перовскитных солнечных панелей составляет менее 100 долларов США, тогда как квадратный метр лучших кремниевых обходится в 300 долларов США. В массовом производстве разница станет 4-6-кратной», — говорится в сообщении.

Солнечные батареи на основе кремния отличаются высокой стоимостью из-за высокотехнологичного, энергоемкого и токсичного производства кремния. Кроме того, они значительно более хрупкие и менее гибкие по сравнению с разработкой российских ученых. Особенность же перовскитной технологии в том, что активные слои солнечных элементов на его основе можно наносить из жидких растворов на тонкие и гибкие подложки. Это позволяет размещать солнечные батареи на поверхностях любой кривизны: оконные полупрозрачные «энергошторы» домов и машин, фасады и крыши зданий, бытовая электроника и многое другое.

«Главным преимуществом гибридных перовскитов является простота их получения из обычных солей металлов и промышленных химических органических соединений, а не из дорогих и редких элементов, используемых в высокоэффективных полупроводниковых аналогах, таких, как солнечные батареи на основе кремния и арсенида галлия. Не менее важно, что материалы на основе перовскита могут быть использованы для печати фото-электроники не только на стекло, но и на другие материалы и поверхности. Это делает батареи гораздо дешевле, чем при более сложных способах получения тонкопленочных солнечных элементов», — сказал Захидов, слова которого приводятся в сообщении.

Существенное снижение стоимости производства солнечных батарей будет способствовать увеличению доли экологически чистых, возобновляемых источников энергии в общем энергетическом «пироге».

Российские ученые разработают пластичные солнечные батареи нового типа

Источник: http://tass.ru/ural-news/3174602

ЕКАТЕРИНБУРГ, 4 апреля. /ТАСС/. Российские ученые планируют разработать первые опытные образцы пластичных солнечных батарей нового поколения к 2018 году, сообщил корр. ТАСС научный сотрудник Управления по научной инновационной деятельности Южно-Уральского государственного университета Олег Большаков. Проект реализуется при грантовой поддержке Российского научного фонда.

«Совместно с коллегами из московского Института органической химии мы работаем над созданием пластичных тонкопленочных солнечных батарей нового поколения уже в течение 1,5 лет. Первая партия материала для солнечных батарей уже готова, она будут тестироваться на протяжении 2-3 месяцев в специальной лаборатории при университете Эдинбурга в Шотландии», — сказал Большаков. «В России пока необходимых сертифицированных лабораторий нет, поэтому мы обратились к зарубежным специалистам. По плану к 2018 году мы выпустим первые опытные образцы», — добавил он.

По словам ученых, главная особенность солнечных батарей нового типа — органический светочувствительный материал. «Такие батареи не будут токсичными, также они не требуют большого количества светочувствительного материала — в 1000 раз меньше по сравнению с батареями предыдущих поколений, поэтому они будут и наиболее доступными по цене. По этим причинам разработки в этом направлении ведутся по всему миру. Но аналогов нашей технологии пока нет, так что реализация нашего проекта даст нам большие преимущества в альтернативной энергетики будущего», — добавил Большаков.

Он также отметил, что на данный момент специалистам предстоит выявить статистическую зависимость между структурой материалов и эффективностью. «Каждый фотоэлемент характеризуется двумя основными параметрами — устойчивостью и энергоэффективностью. Необходимо определить наиболее удачные варианты из тех, которые мы отправили в лабораторию, после чего их уже можно будет применять к различным поверхностям. Дальнейшая научная работа будет связана с усовершенствованием материалов», — пояснил ученый.

164400.00 руб.

В корзину

Новейшая модель 2017г - это настоящий технический прорыв в солнечной энергетике.

Солнечная эл.станция "УралецНТ-Инфра" круглосуточную генерирует бесплатную электроэергию. Днем от солнца. Если солнце в облаках - она видит его через облака в инфракрасном спектре и все равно дает энергию. Ночью - энергия берется от реликтового теплового излучения нагретых днем объектов, звезд, луны. Это специальные солнечные батареи нового поколения+высоковольтная схема перевода избытка напряжения в ампераж для заливки в систему энергии.

В комплекте

1. Блок управления Уралец МРРТ высоковольтный 2х ядерный с дублированием контуров

2. Инвертор 4000вт чистый синус

3. Солнечные батареи 100вт 10 штук накопление (10квт-сутки) Резерв мощности на дополнительные солнечные батареи до 50 квт в стуки без переделки энергоблока.(Простой добавкой сонечных батарей)

4. АКБ КВАНТ 190 а-ч две шт

Новое - контроллер для ветрогенератора в подарок. На него можно ставить дополнительные солнечные батареи "Сила" или "Эксморк"

Солнечная электростанция на инфракрасных панелях в прямом смысле видит солнце сквозь облака и работает ночью за счет теплового излучения объектов (эффект прибора ночного видения)

Солнечные панели 125 ватт инфракрасные

размер 1100х1300мм

ток рабочий 2,6 а

напряжение 55 вольт с преобразованием в 24 в (Специальным высоковольтным энергоблоком Уралец)

"Признаки эксклюзивности электростанций Уралец ", такие как взрывозащита, управление отоплением, терморегуляция, климат-контроль, пожарная сигнализация, автоматика защиты от перегрузок - полностью сохранены в энергоблоке станций нового поколения образца 2017г

АКБ в комплекте - 190+190 а-ч свинцово - кальциевые по живучести соответствуют гелевым. (Имеется в виду эффект, когда при ежеднгевном использовании что гелевые, что кальциевые батареи служат 5 лет) Однако гелевые в 2 раза дороже кальциевых.

И конечно же - надежный, проверенный временем инвертор Чистого синуса 4 квт тяговой и 6 квт пиковой мощности " Прогресс 24-6000" от Альфаэлектроники (Новосибирск) по цене завода 26000 руб с понятным и удобным РУССКОЯЗЫЧНЫМ меню управления и гарантийным и постгарантийным ремонтом в России - по прежнему занимает достойное место в системе Уралец-Инфра.


О солнечной энергетике:
Солнечная энергетика - высокотехнологичная отрасль, получившая динамичное развитие в последние годы. Для российской экономики положительный эффект от роста доли солнечной энергетики заключается в создании высокотехнологичного производства и рабочих мест, значительных налоговых отчислениях, сокращении вредных выбросов. С течением времени солнечная электроэнергия становится дешевле традиционной генерации за счёт низких операционных расходов и отсутствия топливной составляющей.

0,5% солнечной энергии могло бы обеспечить все потребности мировой энергетики на сегодняшний день



Часто задаваемые вопросы:

Что такое инсоляция?
Инсоляция - (от лат. in solo выставлено на солнце) количество электромагнитной энергии (радиации), падающей на поверхность земли. Инсоляция измеряется числом единиц энергии, падающей на единицу поверхности за единицу времени. Обычно инсоляцию измеряют в кВт*час/м2.

Сколько солнца в России?
Россия обладает достаточно высоким уровнем инсоляции - у нас есть довольно много районов, где среднегодовой приход солнечной радиации составляет 4-5 кВт*ч на квадратный метр в день (этот показатель соизмерим с югом Германии и севером Испании - странах-лидерах по внедрению солнечных систем). При этом высокий уровень инсоляции в России не только на юге - Краснодарском крае, Ростовской области, Кавказе, но также на Алтае, да и в целом на юге Сибири, Дальнем Востоке и в Забайкалье - в этих регионах количество солнечных дней в году доходит до 300.

Как работает солнечная электростанция?
Принцип работы солнечного модуля, который является основой солнечной электростанции, довольно прост - поверхность модуля улавливает солнечный свет и за счёт проводниковых свойств кремния преобразует его в электрическую энергию.
Солнечные электростанции состоят из солнечных модулей, подключённых в единую цепь, инверторов и другого оборудования.
Существуют два основных типа солнечных электростанций: сетевые - отпускающие всю вырабатываемую электроэнергию в сеть и автономные.
На автономных станциях за счёт установки аккумуляторов есть возможность накапливать электроэнергию для использования, например, в тёмное время суток.

Как посчитать окупаемость солнечной энергоустановки?
Для расчёта окупаемости необходимы следующие показатели: мощность солнечной установки и её ежегодная выработка (зависит от инсоляции региона и типа модулей), размер тарифа за электроэнергию или стоимость подключения при отсутствии централизованного электроснабжения, а также стоимость самой установки под ключ.

Например, мощность энергоустановки составляет 3 кВт, а её расчётная ежегодная выработка составляет 5 тысяч кВт*ч. При тарифе на электроэнергию на уровне 4 рублей, такая установка позволит экономить 20 тысяч рублей в год.

Как развивается солнечная энергетика в России?
Россия не осталась в стороне от мировых трендов развития солнечной энергетики - в России есть производство солнечных модулей, строятся большие сетевые и малые автономные солнечные электростанции, разработана и запатентована собственная высокоэффективная технология производства гетероструктурных модулей.
Установленная мощность солнечных электростанций в России достигает порядка 500 МВт, а до 2024 года планируется довести эти показатели до 1,5 ГВт. Развивается и розничный рынок - сегодня в России практически в каждом российском регионе есть компании, которые предлагают солнечные решения.
Со второго квартала 2017 года группа компаний "Хевел" приступила к производству солнечных модулей нового поколения по гетероструктурной технологии - это наиболее перспективная из существующих сегодня технологий.
Один из наиболее перспективных новых сегментов, который Россия успешно освоила - гибридная генерация с использованием возобновляемых источников энергии. В 2013 году в Республике Алтай запущена первая в мире автономная гибридная энергоустановка, работающая на солнечной и дизельной генерации. Такие решения перспективны не только для труднодоступных и изолированных российских территорий, но и как технология на экспорт - в странах Африки и Азии, по разным оценкам, более 1,2 млрд людей не имеют доступа к электроэнергии и тратят ежегодно более 27 млрд долларов на керосин и свечи.

Когда солнечная энергетика будет доступна каждому?
Во всём мире поддержка солнечной энергетики начиналась именно «с крыш» - потребители после установки частных солнечных установок получали либо существенную скидку на оплату электроэнергии, либо специальный «зелёный» тариф, по которому они могли отпускать электроэнергию в сеть. Это обеспечило ускоренный рост технологий, а развитие конкуренции, экономия масштаба и автоматизация производств привели к тому, что капитальные затраты на строительство СЭС в мире за последние 8 лет снизились в 5 раз. В России уже локализовано производство компонентов, поэтому вне зависимости от курса валют солнечная энергетика продолжит дешеветь для российских потребителей.
Сегодня в силу в силу технологических особенностей энергосистемы и нормативного регулирования рынка, 90% всех «зелёных» энергоустановок небольшой мощности - до 10 кВт - это автономные или гибридные системы, не включённые в единую энергосистему. Технологическое включение частных владельцев солнечных установок в работу розничного рынка электроэнергии сегодня хотя и не запрещено формально, на практике труднореализуемо - в российском законодательстве нет положений, определяющих статус такого потребителя-производителя, а у энергосбытовых компаний нет обязательств по покупке «солнечных» объёмов электроэнергии. Тем не менее, в ряде российских регионов уже есть примеры покупки «зелёной» электроэнергии у простых потребителей энергосбытовыми компаниями.
Сейчас правительство поручило проработать вопрос об упрощении продажи зелёной электроэнергии от частных домохозяйств в общую сеть. В 2017 году будем следить за развитием событий.
Другая форма поддержки возобновляемой энергетики - субсидирование кредитов на покупку солнечных энергоустановок. В России этот сегмент кредитования только начинает развиваться, но это вопрос 2-3 лет и скоро купить солнечную установку для дачи в рассрочку или по льготному кредиту будет не сложнее, чем бытовую технику.

Какие перспективы у солнечной энергетики сегодня?
В 2016 году в солнечной энергетике случился настоящий бум - по оценкам различных аналитических агентств было построено порядка 76 ГВт солнечных мощностей.
Так что перспективы самые радужные - инвестиции в солнечную энергетику растут, и Россия просто не сможет оставаться в стороне. У нас огромное количество энергодефицитных и изолированных от общей сети территорий с высоким уровнем инсоляции, где развитие солнечной энергетики не просто эффективно, но и позволит сэкономить миллионы бюджетных средств, которые сейчас идут на сдерживание роста тарифов на электроэнергию.



Благодаря активному развитию технологий появляется все больше возможностей экономичного и безопасного способа отопления загородных домов. нового поколения - это возможность получения энергии от природных явлений, к тому же энергия солнца неиссякаемая.

Чем хороши?

Первые солнечные батареи появились давно. Сегодня эти системы модернизированы и усовершенствованы, поэтому есть возможность выбрать новые способы отопления. Солнечные батареи для частного дома имеют целый ряд преимуществ по сравнению с привычными способами обогрева помещений:

  1. Ваше жилье будет обеспечено теплом ровно настолько, насколько вам это нужно.
  2. Вы всегда будете держать под контролем баланс температуры в доме на том уровне, который комфортен для вас.
  3. Ваша отопительная система будет полностью автоматической и не зависимой от того, как работают коммунальные службы.
  4. Вы сможете существенно сэкономить на оплате энергии за счет того, что батареи отличаются большим сроком службы.

Конструктивные особенности

Нового поколения представляет собой фотоэлектрические ячейки, запакованные в общую рамку. Каждая ячейка создана из полупроводниковых материалов, чаще всего из кремния. Лучи попадают на металл, нагревают его, поглощая его же энергию. Под воздействием притока энергии внутри полупроводника высвобождаются электроны. Фотоэлемент дополняется электрическим полем. Его задача - направлять свободные электроны в определенном русле, и именно этот поток способствует образованию электрического тока. Сверху и снизу фотоэлемент можно дополнить металлическими контактами, благодаря чему ток будет направляться по проводам, что обеспечит работу и других устройств.

Как работает?

Солнечная батарея нового поколения в классическом виде имеет следующее устройство:

  • батарея, которая служит генератором постоянного тока;
  • аккумулятор, имеющий устройство, контролирующее заряд;
  • инвертор, задача которого - преобразование постоянного тока в переменный.

Сама батарея - это солнечные элементы (их еще называют фотоэлектрическими преобразователями), благодаря которым солнечная энергия преобразуется в электрическую.

Принцип действия

Солнечные батареи для частного дома - выгодное и простое, хоть и дорогостоящее решение. Специлиасты отмечают, что, несмотря на большие вложенные средства, система оправдает эти затраты уже через год эксплуатации. К тому же использовать ее можно круглый год. Принцип действия солнечной станции сводится к следующему:

  1. Основным источником энергии выступают солнечные лучи. Они попадают на панели - трубчатые радиаторы, которые убраны в короб. Его верхняя часть полностью остекляется и обращается к солнцу. Именно в этих коробах и копится которая передается дальше по системе.
  2. Радиаторы можно сварить из стальных труб, причем нужно выбирать изделия разной толщины.
  3. Стенки короба следует сооружать из досок определенной толщины и длины. Для дна используется фанера, оргалит, а усиление выполняется рейками. Важно, чтобы короб был тщательно теплоизолирован. Для этого утепляются пенопластом.

Учитываем нюансы

Конечно, солнечные станции - это выгодно, просто, удобно и универсально. Но стоит учитывать несколько особенностей их монтажа:

  • целесообразно ставить солнечные батареи, если в вашем регионе много солнечных дней;
  • установка системы стоит недешево, особенно если нужно снабдить энергией большой дом. Но солнечные батареи для дома отзывы получили хорошие как раз благодаря тому, что, несмотря на дороговизну, система окупается уже за первые годы эксплуатации;
  • чтобы станция работала эффективно, важно, чтобы угол наклона кровли был не меньше сорока пяти градусов. Вокруг батарей не должно быть высоких зданий, деревьев, которые будут образовывать тень, мешая тем самым эффективной работе станции;
  • при монтаже батарей на крышу учитывайте, что элементы системы имеют внушительный вес. А потому тщательно продумайте их расположение на кровле.

Виды и особенности

Солнечные батареи для частного дома могут быть представлены в виде малых или больших фотоэлектрических систем. Малыми считаются панели, аккумуляторы которых имеют напряжение максимум 24 вольт. Согласно отзывам таких систем хватает для получения энергии, количества которой достаточно для обслуживания телевизора или освещения в доме. Особенность больших систем - в возможности обеспечения электрической энергией дома средних размеров.

В стандартной комплектации батарея включает в свой состав солнечный вакуумный коллектор, контроллер (контролирует эффективноссть работы системы), насос, подающий теплоноситель к баку от коллектора, емкость для воды, тепловой насос и электрический ТЭН. При высокой мощности отопительной системы можно не только обеспечить дом горячей водой, но и монтировать теплый пол.

Что учесть?

Солнечные батареи на дачу могут стать но для достижения этой цели важно правильно монтировать ее. А для этого, во-первых, нужно исходить из количества проживающих в помещении, во-вторых, из площади жилья, в-третьих, из количества расходуемой энергии. Для отопления солнечными станциями загородного дома важно, чтобы его крыша имела угол ската не меньше тридцати градусов, а сама станция должна располагаться на самой солнечной стороне.

В чем преимущества батарей нового поколения?

Использование энергии исследуется уже не первым поколением ученых. Как следствие, была разработана современная солнечная батарея нового поколения. Ее уникальность в том, что она будет обеспечивать дом энергией даже при закрытом тучами небе. Для создания батарей использованы нанотехнологии на основе спектра волновых частот. Как следствие, подобные солнечные станции будут более экономичными, к тому же сама батарея представляет собой пленку, которую можно наклеить на любые предметы обихода. Как говорят отзывы, нужно устанавливать подобные станции на открытых местах с захватом больших площадей, что позволит вырабатывать большой объем солнечной энергии.

Еще более совершенной системой стали солнечные батареи нового поколения для дома, в основе которых - свинцовый перовскит заменен оловом. По словам разработчиков, такое технологичное решение приводит к тому, что коэффициент полезного действия батарей намного больше, чем при использовании свинца. Кроме повышения эффективности можно еще и снизить затраты на изготовление новых станций.

Tesla: что особенного?

Как отмечают разработчики, новые системы Powerwall хороши тем, что они будут аккумулировать энергию, поэтому их можно использовать даже в бессолнечные дни. В перспективее Соединенные Штаты Америки планируют полностью перейти на новые источники энергии нового поколения. Продажи аккумуляторов Powerwall уже начались!

Можно ли сделать самостоятельно?

Солнечные батареи для дома отзывы получили хорошие еще и благодаря тому, что их можно собрать в том числе и своими руками. Для этого нужно приготовить конструктивные элементы будущей станции:

  • накопительный бак и аванкамера, которые будут располагаться на чердаке дома;
  • уровень воды в камере должен быть выше уровня воды в баке как минимум на метр;
  • солнечные коллекторы располагаются на южной стороне дома, на крыше, с соблюдением угла наклона в тридцать пять-сорок пять градусов;
  • элементы системы конструкции соединяются двумя видами труб - дюймовыми и полудюймовыми;
  • все соединения труб должны быть максимальными герметичными и теплоизолированными;
  • солнечные системы отопления заполняются водой.

А как быть зимой?

Многие говорят о том, что можно использовать только летом солнечные батареи нового поколения. Фото показывают, что в зависимости от объемов площадей системы могут быть самыми разными по размеру. Что касается эксплуатации станций в зимнее время, то разработчики отмечают: основной источник их работы - это солнечный свет, а электромагнитное излучение будет достигать Земли в любое время года. Просто когда пасмурно, вырабатывается несколько меньше энергии. Солнечные панели будут эффективно работать даже при попадании на них снега. Но стоит понимать, что зимой эффективность систем все-таки ниже по сравнению с летней солнечной погодой.

На протяжении многих тысячелетий человечество использовало природные ресурсы для получения энергии. Начиная с дров, которые сжигали, чтобы согреться и приготовить пищу, и заканчивая атомной энергетикой. Земные запасы оказались невечными, а потребности современного общества несопоставимо высокими, по сравнению с процессами возобновления. Самым перспективным направлением в поисках альтернативных источников энергии стали новые технологии солнечных панелей.

Гениальное изобретение

Уже в конце XIX ст. ученые стали задумываться над использованием энергии Солнца. Поводом послужила работа известного французского физика А. Беккереля – «Электрические явления, происходящие от освещения тел». В ней он описал фотовольтаический эффект – возникновения напряжения или электрического тока в веществах под воздействием света. Неоценимый вклад в 1873 г. сделал английский инженер-электрик У. Смит, открывший фотопроводимость селена. В 1887 г. немецкий физик Герц открыл внешний фотоэффект, изучив выход электронов из вещества при воздействии на него светом.

Еще более полувека ученые трудились над созданием прямого преобразователя света в электроэнергию. В 1950-х гг. специалистами компании Bell Laboratories была создана первая полноценная солнечная панель. Новые технологии сразу вызвали огромный интерес в космической сфере и, спустя всего 4 года, в космос были запущены американский и советский спутники, оснащенные солнечными батареями.

Солнечная энергия сегодня

Казалось бы, зачем строить ядерные реакторы, когда чуть более чем в 8 световых минутах от нас находится термоядерный источник колоссальной энергии – Солнце. Если представить мощность фотонного потока в Ваттах, то в среднем с учетом полюс-экватор, день-ночь и лето-зима, получится 325 Вт на 1 м². Учитывая площадь поверхности земли – 510,1 млн. км², выходит, что наша планета постоянно принимает 165,7 триллионов кВт в час.

За одни сутки от Солнца на Землю поступает столько энергии, сколько не смогут выработать за год все электростанции мира.

Преобразование световой энергии

В настоящее время использование энергии Солнца стало актуальной задачей. Ведь это самый дешевый и экологически чистый способ получения электроэнергии и тепла. По сравнению с ТЭС, конечная цена электроэнергии для потребителя обходится на 80% дешевле. Потребность в альтернативных источниках недорогой электроэнергии повысила спрос на солнечные батареи, а конкуренция между производителями дала стимул научным разработкам новых технологий.

Существует 3 способа преобразования световой энергии, которые уже широко применяются по всему миру.

Это самый простой способ с применением недорогого оборудования. Принцип действия заключается в нагревании воды Солнцем. Такие установки до недавнего времени применялись в основном только в жарких странах для горячего водоснабжения. Современные коллекторы, произведенные в России, рассчитаны для эксплуатации в северных регионах. При температуре на улице — 10°C в ясную погоду они нагревают воду до 80-90°C.

Сравнительно новая технология, которая активно внедряется в Германии. Изначально установка была задумана для получения дешевого водорода без причинения вреда окружающей среде. Сам водород ‒ это самое экологическое топливо. В отличие от углеводородов, продукт его сгорания ‒ обыкновенный водяной пар (H 2 + 0,5 O 2 → H 2 O). В ходе разработок был получен целый энергетический комплекс, способный обеспечить частное хозяйство электроэнергией, горячим водоснабжением и отоплением. В хорошую погоду электроэнергию вырабатывают батареи, а излишки энергии расходуются на получение водорода. При недостатке генерированного электричества, в ход пускается накопленный водород. Ведущие производители таких комплексных систем ‒ это компании HPS Home Power Solutions GmbH и CNX Construction.

Прямое преобразование энергии Солнца в электрическую постоянно совершенствуется и расширяется. Стремительный рост внедрения СЭС подтверждается статистикой. В 2005 общая мощность солярных проектов составляла всего 5 ГВт, а уже в 2014 – 150 ГВт. Сегодня в мире существует множество таких электростанций, самые крупные из которых:

  • «Топаз», Калифорния – 1096 МВт;
  • «Agua Caliente», Аризона – 626 МВт;
  • «Mesquite», Аризона – 413 МВт;
  • «Solar Ranch», Калифорния – 399 МВт;
  • «Хуанхэ», Цинхай – 317 МВт;
  • «Каталина», Калифорния – 204 МВт;
  • «Xitieshan», Цинхай – 150 МВт;
  • «Нинся Qingyang», Нинся – 150 МВт;
  • «Перово», Крым – 133 МВт;
  • «Серебро», Невада – 122 МВт.

В России в настоящий момент работает 23 СЭС общей мощностью 250,318 МВт. К тому же применяемое оборудование постоянно модернизируется, а мощности наращиваются.

В настоящее время в стадии проектирования и строительства на территории РФ находится 31 СЭС.

Кроме крупномасштабных энергетических проектов, солнечные батареи все больше применяются в быту и в различного рода устройствах. Их устанавливают на крышах частных домов, на опорах уличного освещения, встраивают в портативные зарядные устройства, вычислительную технику и автономные приборы освещения для придомовой территории.

Среди самых необычных решений можно отметить велодорожку в Нидерландах и километровый участок автодороги во Франции, выполненные с покрытием из фотоэлементов, а в Корее разработали батарею-имплантат. Он в 15 раз тоньше волоса, предназначен для вживления под кожу и способен питать имплантированные приборы.

Принцип действия

Светоприёмная панель состоит из ячеек (модулей), которые выполняются из двуслойного полупроводникового материала, обладающего свойством фотопроводимости. Верхний слой полупроводника типа «n» имеет отрицательный потенциал, а нижний типа «p» ‒ положительный. При попадании на верхний слой лучей света происходит внешний фотоэффект. Другими словами, полупроводник «n» начинает отдавать электроны. В это же время нижний слой «p», наоборот, способен захватывать электроны. Таким образом, если замкнуть цепь, подсоединив нагрузку к слоям, электроны, покинувшие верхний слой, устремятся через нагрузку к нижнему слою. Затем через p-n переход опять возвращаются в верхний слой.

Реальные достижения

Для создания модулей применяется множество материалов, самыми эффективными по лабораторным исследованиям оказались многослойные фотоэлементы типа GaInP/GaAs/Ge, показавшие коэффициент фотоэлектрического преобразования 32%. При этом в реальности были установлены значительно большие рекордные показатели.

Компания Sharp в 2013 г. создала трехслойный фотоэлемент на индиево-галлий-арсенидной основе, который показал результат КПД 44,4%. Их рекорд в этом же году превзошли ученые Института систем солнечной энергии общества Фраунгофера. В конструкции своего фотоэлемента они применили линзы Френеля, чем добились показателя в 44,7%. Через год они превзошли сами себя и, благодаря особой фокусировке, линзы смогли достичь КПД 46%.

Современные разработки

Одно из перспективных направлений ‒ преобразование в электроэнергию всех спектров излучения. Разработки в этом направлении ведутся многими компаниями, институтами, научными центрами и результаты уже есть.

Теория наноантенн

Идея преобразования излучения Солнца в электрический ток по принципу выпрямляющей антенны, работающей в диапазоне оптических волн 0,4-1,6 мкм, появилась еще в 1972 г. и принадлежит Р. Бейли. Потенциальный КПД таких антенн в теории составит 85%. Первая попытка создать солярный преобразователь на наноантеннах была предпринята в 2002 г. компанией ITN Energy Systems, которая не увенчалась успехом. Несмотря на это, данная методика рассматривается как наиболее перспективная и исследования продолжаются.

Сегодня этот материал, как альтернатива кремнию, наиболее популярный среди производителей. Его стоимость намного дешевле, что в конечном итоге положительно влияет на цену продукта. При этом в его состав входит токсичный свинец, который долгое время пытались заменить. Группа нидерландских ученых, работая над этим вопросом, случайно совершила открытие.

Свинец заменили оловом и при тестовых исследованиях заметили странное явление. «Горячие электроны», то есть электроны с повышенной энергией, отдавали ее через несколько наносекунд, вместо нескольких сотен фемтосекунд, что значительно дольше. В обычных панелях такие электроны преобразовываются в тепло, а не в электричество. В данном случае за счет медлительности электронов появляется возможность преобразовать их в электроэнергию, до того, как они станут теплом.

Пока ученые выясняют, почему горячие электроны замедляют свое рассеивание и как можно заставить их рассеиваться еще медленнее. По словам профессора фотофизики и оптоэлектроники М. Лои, теоретические прогнозы КПД такой батареи составят 66%.

Идеальное излучение

Чтобы решить проблему поглощения светоэлементом всего спектра излучения Солнца, команда исследователей из Хайфа (Израиль) предложили нестандартное решение. В опытах они решили преобразовать солнечный свет в идеальное излучение. Для этого они разработали и применили уникальный фотолюминесцентный материал. Подобная технология используется в светодиодных лампах, где диодное свечение поглощается люминофором и преобразовывается в свечение, оптимальное для восприятия человеком. В случае с элементом, материал преобразует весь спектр излучения в свет, идеально поглощающийся панелью. По утверждению молодых ученых, преобразование света позволит увеличить конверсию в электричество до 50%.

Многослойные панели для установки на крыше

Ранее ученые из университета Нового Южного Уэльса предложили концентрировать излучение Солнца с помощью зеркал. Такая методика позволила значительно увеличить эффективность работы элементов. Сегодня эта технология применяется на множестве СЭС, однако для батарей, устанавливаемых на крышах частных домов, такая конструкция невозможна. Увеличить эффективность преобразования неконцентрированного света до 53% предложили разработчики германского научного центра Agora Energiewende.

В основе их изобретения лежит многослойная панель способная поглощать 4 диапазона света. Специальный преломляющий слой отражает инфракрасный спектр к кремниевой части и пропускает остальной свет к трехслойной панели. Первый слой ‒ индий-галлий-фосфид, второй – индий-галлий-арсенид и третий ‒ германий. Каждый поглощает свет в определенном диапазоне, и в результате получается «выжать» максимум энергии.

Теоретически конструкция идеальна, но на практике для применения на крыше возникли проблемы со сложностью обслуживания. Пока разрабатываемая для частного сектора батарея больше подходит для электростанций, но работы по ее усовершенствованию продолжаются.

Энергия днем и ночью

Особое внимание многих научных изданий привлекли разработки китайских ученых. Это не удивительно, ведь Китай в этой области держит первенство и является крупнейшим поставщиком солнечных панелей, пользующихся спросом по всему миру.

Китайские разработчики предложили панель, работающую не только в светлое время суток, но и ночью. Секрет заключается в слое люминофора с длительным послесвечением. Днем непоглощённый фотоэлементом свет задерживается люминофором, который светится ночью, отдавая энергию фотоэлементам. Хотя ночное КПД составляет всего 25%, такие батареи смогут значительно повысить эффективность солнечной энергетики.

Инженерные решения

С ростом СЭС по всему миру появляется новая проблема, особо актуальная для европейских стран. Для строительства таких электростанций необходимо большое пространство. В некотором плане эту проблему решают интеграцией фотоэлементов в дорожное покрытие и установкой светоприёмников на крышах. Но часто приходится модернизировать кровельные конструкции, а в некоторых случаях установка противоречит архитектурным особенностям. Актуальность повышения интеграционных возможностей солнечных батарей приобрела критическую отметку, поэтому над этим сегодня работают ведущие инженеры и архитекторы.

Кровля из фотоэлементов

Интересную конструкцию на конференции Solar Power International 2017 в Лас-Вегасе представила компания Hanergy. Кровельная плитка Hantiles представляет собой волнообразную черепицу со встроенными фотоэлементами. Совместив кровельный материал и фотоэлементы, сохраняется эстетический вид постройки, а кровельная конструкция не требует дополнений. К тому же по стоимости получается дешевле, чем приобретать отдельно кровлю и панели.

Облицовка стен солнечными панелями

Швейцарский центр микротехники и электроники «CSEM» предложил новую технологию по производству наружных стеновых облицовочных панелей, которые одновременно являются еще и солнечными. Особенность заключается в сохранении качеств облицовочного материала. Панели выглядят монотонно и обладают высокими тепло- и звукоизоляционными свойствами. Пока были представлены только белые варианты, но разработчики говорят, что возможен любой цвет.

Скоро вместо энергосберегающих окон можно будет устанавливать энергогенерирующие. Инновационное окно от разработчиков национальной лаборатории Лос-Аламоса визуально ничем не отличается от простых окон. При этом в них применен однокамерный стеклопакет со встроенными квантовыми точками на основе марганца на внешнем стекле и на основе селенид меди-индия на внутреннем. Стекла выступают в роли люминесцентного концентратора и, поглощая свет, перенаправляют его к краям рамы, где он преобразуется в электроэнергию встроенными фотоэлементами.

Еще дальше пошли немецкие инженеры из Йенского университета. Они предложили смарт-окна. Идея «умных» окон не новая. Раньше другими разработчиками предлагались стекла, изменяющие светопрозрачность и вырабатывающие электроэнергию за счет заламинированных фотоэлементов. В этот раз применена принципиально новая технология LaWin. Теперь к функциям окон добавилась способность работать как освещение и отопление.

Подзарядка на ходу

Японские разработчики из института RIKEN и Токийского университета изобрели ультратонкий гибкий фотоэлемент, который не боится воды и растягивающих нагрузок. При интеграции такой батареи в текстиль можно создавать одежду с возможностью подключения мобильных устройств или любой другой электроники.