Подключение фоторезистора к ардуино и работа с датчиком освещенности. Схема фотореле и правила подключения Фоторезистор уличного освещения на ардуино

Новые статьи

● Проект 13: Фоторезистор. Обрабатываем освещённость, зажигая или гася светодиоды

В этом эксперименте мы познакомимся с аналоговым датчиком для измерения освещенности - фоторезистором (рис. 13.1).

Необходимые компоненты:

Распространённое использование фоторезистора - измерение освещённости. В темноте его сопротивление довольно велико. Когда на фоторезистор попадает свет, сопротивление падает пропорционально освещенности. Схема подключения фоторезистора к Arduino показана на рис. 13.2. Для измерения освещённости необходимо собрать делитель напряжения, в котором верхнее плечо будет представлено фоторезистором, нижнее - обычным резистором достаточно большого номинала. Будем использовать резистор 10 кОм. Среднее плечо делителя подключаем к аналоговому входу A0 Arduino.

Рис. 13.2. Схема подключения фоторезистора к Arduino

Напишем скетч чтения аналоговых данных и отправки их в последовательный порт. Содержимое скетча показано в листинге 13.1.

Int light; // переменная для хранения данных фоторезистора void setup () { Serial.begin(9600 ); } void loop () { light = analogRead(0 ); Serial.println(light); delay(100 ); }
Порядок подключения:

1. Подключаем фоторезистор по схеме на рис. 13.2.
2. Загружаем в плату Arduino скетч из листинга 13.1.
3. Регулируем рукой освещенность фоторезистора и наблюдаем вывод в последовательный порт изменяющихся значений, запоминаем показания при полной освещенности помещения и при полном перекрывании светового потока.

Теперь создадим индикатор освещенности с помощью светодиодного ряда из 8 светодиодов. Количество горящих светодиодов пропорционально текущей освещенности. Собираем светодиоды по схеме на рис. 13.3, используя ограничительные резисторы номиналом 220 Ом.

Рис. 13.3. Схема подключения фоторезистора и светодиодов к Arduino


Содержимое скетча для отображения текущей освещенности на линейке светодиодов показано в листинге 13.2.

// Контакт подключения светодиодов const int leds={3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 }; const int LIGHT=A0; // Контакт A0 для входа фоторезистора const int MIN_LIGHT=200 ; // Нижний порог освещенности const int MAX_LIGHT=900 ; // верхний порог освещенности // Переменная для хранения данных фоторезистора int val = 0 ; void setup () { // Сконфигурировать контакты светодиодов как выход for (int i=0 ;i<8 ;i++) pinMode(leds[i],OUTPUT); } void loop () { val = analogRead(LIGHT); // Чтение показаний фоторезистора // Применение функции map() val = map (val, MIN_LIGHT, MAX_LIGHT, 8 , 0 ); // ограничиваем, чтобы не превысило границ val = constrain(val, 0 , 8 ); // зажечь кол-во светодиодов, пропорциональное освещенности, // остальные потушить for (int i=1 ;i<9 ;i++) { if (i>=val) // зажечь светодиоды digitalWrite(leds,HIGH); else // потушить светодиоды digitalWrite(leds,LOW); } delay(1000 ); // пауза перед следующим измерением }
Порядок подключения:

1. Подключаем фоторезистор и светодиоды по схеме на рис. 13.3.
2. Загружаем в плату Arduino скетч из листинга 13.2.
3. Регулируем рукой освещенность фоторезистора и по количеству горящих светодиодов определяем текущий уровень освещенности (рис. 13.3).

Нижний и верхний пределы освещенности мы берем из запомненных значений при проведении эксперимента по предыдущему скетчу (листинг 13.1). Промежуточное значение освещенности мы масштабируем на 8 значений (8 светодиодов) и зажигаем количество светодиодов пропорциональное значению между нижней и верхней границами.

Листинги программ

Электрическое сопротивление которого изменяется под влиянием световых лучей, падающих на светочувствительную поверхность и не зависит от приложенного напряжения, как у обычного резистора.

Фоторезисторы чаще всего используются для определения наличия или отсутствия света или для измерения интенсивности света. В темноте, их сопротивление очень высокое, иногда доходит до 1 МОм, но когда датчик LDR подвергается воздействию света, его сопротивление резко падает, вплоть до нескольких десятков ом в зависимости от интенсивности света.

Фоторезисторы имеют чувствительность, которая изменяется с длиной волны света. Они используются во многих устройствах, хотя уступают по своей популярности фотодиодам и фототранзисторам. Некоторые страны запретили LDR из-за содержащегося в них свинца или кадмия по соображению экологической безопасности.

Определение: Фоторезистор — светочувствительный элемент, чье сопротивление уменьшается при интенсивном освещении и увеличивается при его отсутствии.

Характеристики фоторезистора

Виды фоторезисторов и принцип работы

На основании материалов, используемых при производстве, фоторезисторы могут быть разделены на две группы: с внутренним и внешним фотоэффектом. В производстве фоторезисторов с внутренним фотоэффектом используют нелегированные материалы, такие как кремний или германий.

Фотоны, которые попадают на устройство, заставляют электроны перемещаться из валентной зоны в зону проводимости. В результате этого процесса появляется большое количество свободных электронов в материале, тем самым улучшается электропроводность и, следовательно, уменьшается сопротивление.

Фоторезисторы с внешним фотоэффектом производятся из материалов, с добавлением примеси, называемой легирующая добавка. Легирующая добавка создает новую энергетическую зону поверх существующей валентной зоной, заселенную электронами. Этим электронам требуется меньше энергии, чтобы совершить переход в зону проводимости благодаря меньшей энергетической щели. Результат этого – фоторезистор чувствителен к различным длинам волн света.

Несмотря на все это, оба типа демонстрируют уменьшение сопротивления при освещении. Чем выше интенсивность света, тем больше падает сопротивление. Следовательно, сопротивлением фоторезистора является обратная, нелинейная функция интенсивности света.

Фоторезистор на схемах обозначается следующим образом:

Чувствительность фоторезистора от длины волны

Чувствительность фоторезистора зависит от длины волны света. Если длина волны находится вне рабочего диапазона, то свет не будет оказывать никакого действия на LDR. Можно сказать, что LDR не чувствителен в этом диапазоне длин волн света.

Различные материалы имеют различные уникальные спектральные кривые отклика волны по сравнению с чувствительностью. Внешне светозависимые резисторы, как правило, предназначены для больших длин волн, с тенденцией в сторону инфракрасного (ИК). При работе в ИК-диапазоне, необходимо соблюдать осторожность, чтобы избежать перегрева, который может повлиять на измерения из-за изменения сопротивления фоторезистора от теплового эффекта.

На следующем рисунке показана спектральная характеристика фотопроводящих детекторов, изготовленные из различных материалов.

Чувствительность фоторезистора

Фотрезисторы имеют более низкую чувствительность, чем фотодиоды и фототранзисторы. Фотодиоды и фототранзисторы — полупроводниковые устройства, в которых используется свет для управления потоком электронов и дырок через PN-переход, а фоторезисторы лишеные этого PN-перехода.

Если интенсивность светового потока находиться на стабильном уровне, то сопротивление по-прежнему может существенно изменяться вследствие изменения температуры, поскольку LDR также чувствительны и к изменениям температуры. Это качество фоторезистора делает его непригодным для точного измерения интенсивности света.

Инертность фоторезистора

Еще одно интересное свойство фоторезистора заключается в том, что существует инертность (время задержки) между изменениями в освещении и изменением сопротивления.

Для того чтобы сопротивление упало до минимума при полном освещении необходимо около 10 мс времени, и около 1 секунды для того, чтобы сопротивление фоторезистора возросло до максимума после его затемнения.

По этой причине LDR не может использоваться в устройствах, где необходимо учитывать резкие перепады освещения.

Конструкция и свойства фоторезистора

Впервые фотопроводимость была обнаружена у Селена, впоследствии были обнаружены и другие материалы с аналогичными свойствами. Современные фоторезисторы выполнены из сульфида свинца, селенида свинца, антимонида индия, но чаще всего из сульфида кадмия и селенида кадмия. Популярные LDR из сульфида кадмия обозначаются как CDS фоторезистор.

Для изготовления фоторезистора из сульфида кадмия, высокоочищенный порошок сульфида кадмия смешивают с инертными связующими материалами. Затем, эту смесь прессуют и спекают. В вакууме на основание с электродами наносят фоточувствительный слой в виде извилистой дорожки. Затем, основание помещается в стеклянную или пластиковую оболочку, для предотвращения загрязнения фоточувствительного элемента.

Спектральная кривая отклика сульфида кадмия совпадает с человеческим глазом. Длина волны пиковой чувствительности составляет около 560-600 нм, что соответствует видимой части спектра. Следует отметить, что устройства, содержащие свинец или кадмий не соответствуют RoHS и запрещены для использования в странах, которые придерживаются законов RoHS.

Примеры применения фоторезисторов

Фоторезисторы чаще всего используются в качестве датчиков света, когда требуется определить наличие или отсутствие света или зафиксировать интенсивность света. Примерами являются автоматы включения уличного освещения и фотоэкспонометры. В качестве примера использования фоторезистора, приведем схему фотореле для уличного освещения.

Фотореле для уличного освещения

Данная схема фотореле автоматически включает уличное освещение, когда наступает ночь и выключает когда светлеет. На самом деле вы можете использовать данную схему для реализации любого типа автоматического включения ночного освещения.

При освещении фоторезистора (R1), его сопротивление уменьшается, падение напряжения на переменном резисторе R2 будет высоким, вследствие чего транзистор VT1 открывается. Коллектор VT1 (BC107) соединен с базой транзистора VT2 (SL100). Транзистор VT2 закрыт и реле обесточено. Когда наступает ночь, сопротивление LDR увеличивается, напряжение на переменном резисторе R2, падает, транзистор VT1 закрывается. В свою очередь, транзистор VT2 открывается и подает напряжение на реле, которое включает лампу.

Основным элементом датчика являются фоторезисторы, фототранзисторы и фотодиоды.

Обозначение фоторезистора
Обозначение фоторезистора


Фоторезистор - полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом. В нем, как и во всех фотоэлементах, есть окошечко, с помощью которого он «ловит» свет, чем больше падает света на фоторезистор, тем меньше его сопротивление

Эти простые схемы представляют собой датчики освещения, в качестве чувствительного элемента используется фоторезистор. Первая схема - датчик затемнения, вторая - освещения.

Когда свет попадает на фоторезистор, он меняет сопротивление, чем больше света тем меньше сопротивление и больше падение напряжения на нем. При увеличении падения напряжения транзистор открывается, срабатывает реле. Порог срабатывания реле можно отрегулировать при помощи переменного резистора 50 кОм.

Различаются фоторезисторы по диапазону сопротивления. Например:

  • VT83N1 - 12-100кОм;
  • VT93N2 - 48-500кОм.

Это значит, что в темноте сопротивления фоторезистора равно 12кОм, а при определенной тестовой засветке - 100кОм. Конкретно в случае этих светодиодов, тестовая засветка имела параметры: освещенность -10 Люкс, и цветовая теплота - 2856К.

Кроме фоторезистора, в датчиках света часто используют фотодиод и фототранзистор. Оба выглядят как типичные светодиоды





Пример подключения фоторезистора к Ардуино

На выходе цепи фоторезистора мы получим некое напряжение, в диапазоне от 0 до 5 Вольт, которое нам потребуется превратить в конкретное число, с которым уже будет работать программа микроконтроллера.


Ардуино подключение фоторезистора — схема
Так выглядит собранная модель Arduino с фоторезистором:

Необходимые компоненты для подключения фоторезистора на Arduino

Так выглядит собранная модель Arduino с фоторезистором:

Самое простое, что мы можем сделать - это зажигать на Ардуино штатный светодиод #13. Получается скетч:

const int pinPhoto = A0;

const int led = 13;

pinMode(pinPhoto, INPUT);

pinMode(led, OUTPUT);

raw = analogRead(pinPhoto);

if(raw < 600)

digitalWrite(led, HIGH);

digitalWrite(led, LOW);

Датчик освещенности — ардуино подключение





BH1750FVI цифровой модуль освещенности для Arduino

Для измерения освещенности отлично подходят на базе сенсора BH1750 датчики Gy-30 и Gy-302.

Характеристики BH1750FVI цифровой модуль освещенности для Arduino:

  • Цифровой 16-битный цифровой датчик освещённости
  • Чувствителен к видимому свету и практически не подвержен влиянию инфракрасного излучения
  • Построен на микросхеме BH1750FVI
  • Напряжение питания: +3..+5 В постоянного тока.
  • Интерфейс: I2C.
  • Диапазон измеряемой освещенности: (1 — 65535 лк).
  • Размеры: 3,3 см х 1,5 см х 1,1 см
  • Вес: 5 г

// подключаем библиотеку I2C:

#include

// подключаем библиотеку датчика BH1750:

#include

// объявляем объект lightMeter:

BH1750 lightMeter;

void setup () {

Serial.begin(9600); //инициализация послед. порта

lightMeter.begin(); //инициализация датчика BH1750

void loop () {

//считываем показания с BH1750:

uint16_t lux = lightMeter.readLightLevel();

//выводим показания в послед. порт:

Serial.println(String(lux) + » lx»);

delay(100); //задержка 100 мсек

В скетче мы каждые 100 мсек считываем с датчика BH1750 показания освещённости в люксах и выводим эти данные в последовательный порт.

Проверяем работу. Для этого подключаем Ардуино к ПК. Запускаем среду разработки Arduino IDE и открываем монитор последовательного через меню Инструменты (Ctrl+Shift+M). Смотрим как меняются показания, если направить свет на датчик или если его затенить.

Автоматизация подачи освещения в квартире, в доме или на улице достигается за счет применения фотореле. При правильной настройке оно будет включать свет при наступлении темноты и отключать в светлое время суток. Современные устройства содержат настройку, за счет которой можно устанавливать срабатывание в зависимости от освещенности. Они являются составной частью системы "умного дома", берущей на себя значительную часть обязанностей хозяев. Схема фотореле, прежде всего, содержит резистор, изменяющий сопротивление под действием света. Ее легко собрать и настроить своими руками.

Принцип действия

Схема подключения фотореле для включает датчик, усилитель и Фотопроводник PR1 под действием света изменяет сопротивление. При этом изменяется величина проходящего через него электрического тока. Сигнал усиливается составным транзистором VT1, VT2 (схема Дарлингтона), а с него поступает на исполнительный механизм, которым является K1.

В темноте сопротивление фотодатчика составляет несколько мОм. Под действием света оно снижается до нескольких кОм. При этом открываются транзисторы VT1, VT2, включающие реле K1, управляющим цепью нагрузки через контакт K1.1. Диод VD1 не пропускает ток самоиндукции при выключении реле.

Несмотря на простоту, схема фотореле обладает высокой чувствительностью. Чтобы ее выставить на необходимый уровень, используется резистор R1.

Напряжение питания подбирается по параметрам реле и составляет 5-15 В. Ток обмотки не превышает 50 мА. Если необходимо его увеличить, можно применить более мощные транзисторы и реле. Чувствительность фотореле повышается с увеличением напряжения питания.

Вместо фоторезистора можно установить фотодиод. Если необходим датчик с повышенной чувствительностью, используются схемы с фототранзисторами. Их применение целесообразно с целью экономии электричества, поскольку минимальный предел срабатывания обычного прибора составляет 5 лк, когда окружающие предметы еще различимы. Порог 2 лк соответствует глубоким сумеркам, после которых через 10 мин наступает темнота.

Фотореле целесообразно применять даже при ручном управлении освещением, поскольку можно забыть выключить свет, а датчик самостоятельно "позаботится" об этом. Установить его несложно, а цена вполне доступна.

Характеристики фотоэлементов

Выбор фотореле определяют следующие факторы:

  • чувствительность фотоэлемента;
  • напряжение питания;
  • коммутируемая мощность;
  • внешняя среда.

Чувствительность характеризуется как отношение образующегося фототока к величине внешнего потока света и измеряется в мкА/лм. Она зависит от частоты (спектральная) и интенсивности света (интегральная). Для управления освещением в быту важна последняя характеристика, зависящая от суммарного светового потока.

Величину номинального напряжения можно найти на корпусе прибора или в сопроводительном документе. Устройства зарубежного производства могут иметь другие стандарты напряжения питания.

От мощности светильников, к которым подключено фотореле, зависит нагрузка на его контакты. Схемы фотореле освещения могут предусматривать прямое включение ламп через контакты датчика или через пускатели, когда нагрузка велика.

На открытом воздухе сумеречный выключатель помещается под герметичной прозрачной крышкой. Она является защитой от влаги и осадков. При работе в холодный период применяется подогрев.

Модели заводского изготовления

Раньше схема фотореле собиралась своими руками. Сейчас в этом нет необходимости, так как устройства стали дешевле, а функциональность расширилась. Их применяют не только для внешнего или внутреннего освещения, но также для управлением поливом растений, системой вентиляции и др.

1. Фотореле ФР-2

Модели заводского изготовления широко используются в устройствах автоматики, например, для управления уличным освещением. Часто можно видеть днем горящие фонари, которые забыли выключить. При наличии фотодатчиков нет необходимости в ручном управлении освещением.

Схема фотореле фр-2 промышленного изготовления применяется для автоматического управления уличным освещением. Здесь также является реле К1. К базе транзистора VT1 подключены фоторезистор ФСК-Г1 с резисторами R4 и R5.

Питание производится от однофазной сети 220 В. Когда освещенность мала, сопротивление ФСК-Г1 имеет большую величину и сигнала на базе VT1 недостаточно для его открывания. Соответственно закрыт и транзистор VT2. Реле K1 включено, и его рабочие контакты замкнуты, поддерживая лампы освещения горящими.

Когда освещенность увеличивается до порога срабатывания, снижается сопротивление фоторезистора и открывается после чего реле K1 отключается, размыкая цепь питания ламп.

2. Виды фотореле

Выбор моделей достаточно велик, чтобы можно было выбрать подходящую:

  • с выносным датчиком, расположенным вне корпуса изделия, к которому подводятся 2 провода;
  • люкс 2 - устройство с высокой надежностью и уровнем качества;
  • фотореле с питанием 12 В и нагрузкой не выше ;
  • модуль с таймером, монтирующийся на ДИН-рейку;
  • устройства ИЭК отечественного производителя с высоким качеством и функциональностью;
  • AZ 112 - автомат с высокой чувствительностью;
  • ABB, LPX - надежные производители устройств европейского качества.

Способы подключения фотореле

Перед приобретением датчика необходимо подсчитать потребляемую светильниками мощность и взять с запасом 20 %. При значительной нагрузке схема уличного фотореле предусматривает дополнительную установку электромагнитного пускателя, обмотка которого должна включаться через контакты фотореле, а силовыми контактами коммутировать нагрузку.

Для дома такой способ применяется редко.

Перед установкой проверяется напряжение сети питания ~220 В. Подключение производится от автоматического выключателя. Фотодатчик устанавливается таким образом, чтобы свет от фонаря не попадал на него.

На приборе применяются клеммы для подключения проводов, что делает монтаж проще. Если они отсутствуют, применяется распределительная коробка.

За счет применения микропроцессоров схема подключения фотореле с другими элементами приобрела новые функции. В алгоритм действий внесли таймер и датчик движения.

Удобно, когда светильники автоматически включаются при прохождении человека по лестничной площадке или по дорожке сада. Причем срабатывание происходит только в темное время суток. За счет применения таймера фотореле не реагирует на свет фар от проезжающих автомобилей.

Простейшая схема подключения таймера с датчиком движения - последовательная. Для дорогих моделей разработаны специальные программируемые схемы, учитывающие различные условия эксплуатации.

Фотореле для уличного освещения

Для подключения фотореле схема наносится на его корпус. Ее можно найти в документации на прибор.

Из прибора выходят три провода.

  1. Нулевой проводник - общий для светильников и фотореле (красный).
  2. Фаза - подключается на вход прибора (коричневый).
  3. Потенциальный проводник для подачи напряжения от фотореле на светильники (синий).

Устройство работает по принципу прерывания или включения фазы. Цветовая маркировка у разных производителей может отличаться. Если в сети есть проводник "земля", его к прибору не подключают.

В моделях со встроенным датчиком, который находится внутри прозрачного корпуса, работа уличного освещения автономна. К нему нужно только подвести питание.

Варианты с выносом датчика применяются в случае, когда электронную начинку фотореле удобно разместить в щите управления с другими приборами. Тогда нет необходимости в автономной установке, протягивании электропроводки питания и обслуживании на высоте. Электронный блок размещается внутри помещения, а датчик выносится наружу.

Особенности фотореле для уличного освещения: схема

При установке фотореле на улице надо учитывать некоторые факторы.

  1. Наличие питающего напряжения и соответствие мощностей контактов и нагрузки.
  2. Не допускается установка приборов рядом с легко воспламеняющимися материалами и в агрессивной среде.
  3. Основание прибора размещается внизу.
  4. Перед датчиком не должны находиться качающиеся предметы, например, ветви деревьев.

Подсоединение проводов выполняется через распределительную коробку для улицы. Она закрепляется рядом с фотореле.

Выбор фотореле

  1. Возможность регулирования порога срабатывания позволяет производить подстройку чувствительности датчика в зависимости от времени года или при пасмурной погоде. В результате обеспечивается экономия электричества.
  2. Минимум трудозатрат требуется при монтаже фотореле со встроенным чувствительным элементом. При этом не требуются особые навыки.
  3. Реле с таймером хорошо программируется для своих потребностей и работы в установленном режиме. Можно настроить прибор для отключения в ночное время. Индикация на корпусе прибора и кнопочное управление позволяют легко производить настройку.

Заключение

Применение фотореле позволяет автоматически контролировать период включения ламп. Теперь уже отпала необходимость в профессии фонарщика. Схема фотореле без участия человека по вечерам зажигает свет на улицах и выключает его утром. Устройства могут управлять системой освещения, что повышает ее ресурс и делает эксплуатацию проще.

Для нашего следующего проекта мы будем использовать фоторезистор. А рассмотрим мы реализацию ночника в спальню, который будет автоматически включаться когда темно и выключаться когда становится светло.

Сопротивление фоторезистора зависит от света, попадающего на него. Используя фоторезистор в связке с обычным резистором 4.7 кОм, мы получаем делитель напряжения, в котором напряжение проходящее через фоторезистор, изменяется, в зависимости от уровня освещенности.

Напряжение с делителя, мы подаем на вход АЦП Arduino. Там мы сравниваем полученное значение с определенным порогом и включаем или выключаем светильник.

Принципиальная схема делителя показана ниже. Когда освещенность увеличивается, сопротивление фоторезистора падает и соответственно на выходе делителя (и входе АЦП) напряжение увеличивается. Когда освещенность падает все наоборот.

На фото ниже, показана собранная схема на макетной плате. Напряжения 0В и 5В берутся с Arduino. Ножка А0 используется как вход АЦП.

Ниже показан скетч Arduino. В данном уроке мы просто включаем и выключаем LED, который встроен в плату Arduino. Более яркий LED-светодиод, вы можете подключить к ноге 13 (через резистор ~220 Ом). Если будете подключать более мощную нагрузку, такую как лампу накаливания, то ее следует подключать через реле или тиристор.

В коде программы есть закомментированные участки, они служат для отладки. Можно будет контролировать значение АЦП (от 0 до 1024). Также, необходимо в коде изменить значение 500 (порог включения и выключения) на то, которое вы подберете опытным путем, изменяя освещенность.

/* ** Ночник ** ** www.hobbytronics.co.uk */ int sensorPin = A0; // устанавливаем входную ногу для АЦП unsigned int sensorValue = 0; // цифровое значение фоторезистора void setup() { pinMode(13, OUTPUT); Serial.begin(9600); // старт последовательного вывода данных (для тестирования) } void loop() { sensorValue = analogRead(sensorPin); // считываем значение с фоторезистора if(sensorValue<500) digitalWrite(13, HIGH); // включаем else digitalWrite(13, LOW); // выключаем // Для отладки раскомментируйте нижеследующие строки //Serial.print(sensorValue, DEC); // вывод данных с фоторезистора (0-1024) //Serial.println(""); // возврат каретки //delay(500); }