Прибор для измерения емкости конденсаторов. Цифровой измеритель ёмкости Самодельный измеритель емкости

В данной статье мы дадим наиболее полную инструкцию, которая позволит сделать измеритель ёмкости конденсаторов своими руками, без помощи квалифицированных мастеров.

К сожалению, аппаратура не редко выходит из строя. Причина чаще всего одна – появление электролитического конденсатора. Все радиолюбители знакомы с так называемым «высыханием», которое появляется из-за нарушения герметичности корпуса прибора. Возрастает реактивное сопротивление из-за снижения номинальной емкости.

Далее, во время эксплуатации начинают происходить электрохимические реакции, они разрушают стыки выводов. В результате контакты нарушаются, образовывая контактное сопротивление, которой исчисляется, порой десятками Oм. То же самое будет происходить при подключении к рабочему конденсатору резистора. Наличие этого самого последовательного сопротивления скажется негативно не работе электронного устройства, в схеме будет искажаться вся работа конденсаторов.

Из-за сильнейшего влияния сопротивления в диапазоне три-пять Ом, приходят в негодность импульсные источники питания, ведь в них перегорают дорогостоящие транзисторы, а также микросхемы. Если детали при сборке прибора были проверены, а при монтаже не допущены ошибки, то с его наладкой не возникнет проблем.

Кстати, предлагаем Вам присмотреть себе новый паяльник на Алиэкспресс — ССЫЛКА (отличные отзывы). Либо присмотреть себе что-нибудь из паяльного оборудования в магазине «ВсеИнструменты.ру» — ссылка на раздел с паяльниками .

Схема, принцип работы, устройство

Данная схема используется с применением операционного усилителя. Прибор, который мы собираемся сделать своими руками, позволит производить измерения ёмкости конденсаторов в диапазоне от пары пикoфарад до одного микрофарада.

Давайте разберемся с приведенной схемой :

  • Поддиапазоны . У агрегата есть 6 «поддиапазонов», у них высокие границы равняются 10, 100; 1000 пф, а также 0,01, 0,1 и 1 мкф. Отсчитывается емкость по измерительной сетке микроамперметра.
  • Назначение . Основой работы прибора является замер переменного тока, он проходит сквозь конденсатор, который необходимо исследовать.
  • На усилителе DА 1 находится генератор импульсов. Колебания их повтора подчиняется емкости С 1- С 6 конденсаторов, а также позиции тумблера «подстроечного» резистора R 5. Частота будет переменной от 100 Гц до 200 кГц. Подстроечному резистору R 1 определяем соразмерную модель колебаний при выходе генератора.
  • Указанные на схеме диоды, как D 3 и D 6, резисторы (налаженные) R 7- R 11, микроамперметр РА 1, составляют сам измеритель переменного тока. Внутри микроамперметра сопротивление обязано составлять не больше 3 кОм, с целью, чтобы погрешность при замере не превысила десяти процентов на диапазоне до 10 пФ.
  • К другим поддиапазонам параллельно Р A 1 подсоединяют подстроечные резисторы R 7 – R 11. Нужный измерительный поддиапазон настраивают при помощи тумблера S А 1. Одна категория контактов переключает конденсаторы (частотозадающие) С 1 и С 6 в генераторе, второй переключает в индикаторе резисторы.
  • Чтобы прибор получал энергию, ему нужен 2-полярный стабилизированный источник (напряжение от 8 до 15 В). У частотозадающего конденсатора могут на 20 % разниться номиналы, однако сами они обязаны иметь высокую стабильность временную и температурную.

Конечно, для обычного человека, не разбирающегося в физике, это всё может показаться сложным, но вы должны понимать, чтобы сделать измеритель ёмкости конденсаторов своими руками, нужно обладать определенными знаниями и навыками. Далее поговорим о том, как наладить прибор.

Наладка измерительного прибора

Чтобы произвести правильную наладку, следуйте инструкции:

  1. Сперва достигается симметричность колебаний при помощи резистора R 1. «Бегунок» у резистора R 5 находится посередине.
  2. Следующим действием будет подключение эталонного конденсатора 10 пф к клеммам, отмеченным значком сх. При помощи резистора R 5, переставляют стрелу микроамперметра на соответственную шкалу ёмкости эталонного конденсатора.
  3. Далее проверяется форма колебания при выходе генератора. Тарировка проводится на всех поддиапазонах, здесь применяют резисторы R 7 и R 11.

Механизм устройства может быть разным. Параметры размеров зависят от типа микроамперметра. Каких-то особенностей при работе с прибором не выделяется.

Создание разных моделей измерителей

Модель серии AVR

Сделать такой измеритель можно на базе переменного транзистора. Вот инструкция:

  1. Подбираем контактор;
  2. Замеряем выходное напряжение;
  3. отрицательное сопротивление в измерителя емкости не больше 45 Ом;
  4. Если проводимость 40 мк, то перегрузка составит 4 Ампера;
  5. Для повышения точности измерения, нужно использовать компараторы;
  6. Также есть мнение, что лучше использовать только открытые фильтры, так как для них не страшны импульсные помехи в случае большой загруженности;
  7. Также рекомендуется использовать полюсные стабилизаторы, а вот для модификации устройства не подходят только сеточные компараторы;

Перед тем, как включать измеритель ёмкости конденсаторов, нужно выполнить замер сопротивления, который должен быть примерно 40 Ом для хорошо сделанных устройств. Но показатель может отличаться, в зависимости от частотности модификации.

  • Модуль на базе PIC16F628A может быть регулируемого типа;
  • Лучше не устанавливать фильтры высокой проводимости;
  • Перед тем, как начнем паять, нужно проверить выходное напряжение;
  • Если сопротивление слишком высокое, то меняем транзистор;
  • Применяем компараторы для преодоления импульсных помех;
  • Дополнительно используем проводниковые стабилизаторы;
  • Дисплей может быть текстовым, что проще всего и весьма удобно. Ставить их нужно через канальные порты;
  • Далее с помощью тестера настраиваем модификацию;
  • Если показатели емкости конденсаторов слишком высокие, то меняем транзисторы с малой проводимостью.
  • Более подробно о том, как сделать измеритель ёмкости конденсаторов своими руками можно узнать из видео ниже.

    Видео инструкции


    Электролитические конденсаторы из-за понижения емкости или значительного тока утечки нередко являются причиной неисправности радиоаппаратуры. Измеритель ёмкости, схему которого мы сегодня рассмотрим, позволяет определить целесообразность дальнейшего использования конденсатора, явившегося предположительно причиной неисправности. Совместно с многопредельным авометром (на пределе 5 В) или отдельной измерительной головкой (100 мкА) данным тестером можно измерять емкости от 10 до 10 000 мкф, а также определять степень утечки конденсаторов.

    • Смотрите также схему
    В основе работы тестера лежит принцип контроля остаточного заряда на полюсах конденсатора, который был заряжен током определенной величины в течение определенного времени. Например, емкость 1 Ф, получавшая заряд током 1 А в течение 1 с, будет иметь разность потенциалов на обкладках, равную 1 В.

    Практически постоянный ток заряда испытуемого конденсатора С обеспечивается генератором тока, собранным на транзисторе V5. На первом диапазоне емкости можно измерять до 100 мкф (ток заряда конденсатора 10 мкА), на втором - до 1000 мкф (100 мкА) и на третьем - до 10 000 мкф (1 мА). Время заряда Сx выбрано равным 5 с и отсчитывается либо автоматически с помощью реле времени, либо по секундомеру.

    Схема измерителя емкости конденсаторов и необходимые детали

    Что касается радиодеталей, то вам понадобятся:

    • 4 диода (V1–V4) - SAY12.
    • Транзистор (V5) - SF136C.
    • 2 биполярных транзистора (V6, V7) - КТ326Б.
    • Конденсатор (С1) - 0.022 мкФ.
    • Электролитический конденсатор (С2) - 100 мкФ.
    • 6 резисторов - R1 1 кОм; R3 56 кОм; R5, R10 4.7 кОм; R7 470 Ом; R9 4.7 Ом.
    • 4 подстроечных резистора - R2 50 кОм; R4 2.5 кОм; R6 250 Ом; R8 500 Ом.
    • Микроамперметр (U).
    • Переключатель на 3 положения (S1).
    • Сдвоенный переключатель на 3 положения (S2).
    • Блок питания 9В.
    • Клеммный зажим.

    Последовательность монтажа измерителя емкости конденсаторов своими руками

    1. Перед началом измерения в положении переключателя S2 «разряд», потенциометром R8 устанавливаем баланс моста, образованного базово-эмиттерными переходами транзисторов V6 и V7, резисторами R8, R9, R10 и диодами V3, V4, используемыми в качестве низковольтного источника опорного напряжения.
    2. Затем переключателем S1 выбираем ожидаемый диапазон измерения емкости. Если конденсатор не маркирован или потерял часть емкости, измерения начинаем в первом диапазоне.
    3. Переключатель рода работ S2 перед измерением устанавливаем в положение «Разряд», в этом случае подключаемая емкость Сх тотчас разряжается через резистор R9.
    4. В положении «Заряд» переключатель S2 удерживаем в течение 5 с, а затем переводим в положение «Отсчет» и немедленно производим отсчет результата измерения.
    Значение емкости (в мкф) обратно пропорционально нанесенным на шкалу прибора делениям напряжения (В) и определяется по формуле С= A/U, где А - постоянная, равная 50, 500, 5000 соответственно для первого, второго и третьего диапазонов измерения. Если конденсатор неисправен и обладает большим током утечки, стрелка измерительного прибора быстро вернется на нулевую отметку шкалы. Величина тока утечки при этом не определяется.
    • Смотрите также схемы и фото
    Налаживание тестера несложное и сводится в основном к установке потенциометрами R2, R4, R6 указанных ранее токов заряда по включенному в клеммы Сx микроамперметру.

    Обратите внимание! В измерителе емкости можно применить диоды КД202Б и транзистор КТ340В. Последовательно с микроамперметром следует включить добавочный резистор для получения диапазона 5 В на всю шкалу или использовать авометр, включенный на соответствующий предел измерения.


    Видео о сборке измерителя емкости конденсаторов своими руками:

    Измеритель емкости конденсаторов своими руками — ниже представлена схема и описание как не прилагая больших усилий можно самостоятельно изготовить прибор для тестирования емкости конденсаторов. Такое устройство очень может пригодится при покупке емкостей на радиоэлектронном рынке. С его помощью без проблем выявляется некачественный или бракованный элемент накопления электрического заряда. Принципиальная схема данного ESRа, как его обычно называю большинство электронщиков, ничего сложного из себя не представляет и собрать такой аппарат может даже начинающий радиолюбитель.

    Причем измеритель емкости конденсаторов не предполагает для его сборки длительного времени и больших денежных затрат, на изготовление пробника эквивалентного последовательного сопротивления уходит буквально два-три часа. Также не обязательно бежать в магазин радиотоваров — наверняка у любого радиолюбителя найдутся неиспользованные детали подходящие для этой конструкции. Все, что вам потребуется для повторения данной схемы — это мультиметр практически любой модели, только желательно, что бы был цифровой и с десяток деталей. Каких то переделок или модернизации цифрового тестера производить не нужно, все что необходимо с ним сделать — это припаять выводы деталей к необходимым площадкам на его плате.

    Принципиальная схема устройства ESR:

    Перечень элементов необходимых для сборки измерителя:

    Один из главных компонентов прибора — это трансформатор, который должен иметь соотношением витков 11\1. Ферритовый кольцевой сердечник М2000НМ1-36 К10х6х3, который нужно предварительно обмотать изолирующим материалом. Затем намотать первичную обмотку на него, располагая витки по принципу — виток к витку, при этом заполняя всю окружность. Вторичную обмотку также необходимо выполнять с равномерным распределением по всему периметру. Примерное количество витков в первичной обмотки для кольца К10х6х3 будет 60-90 витков, а вторичка должна быть в одиннадцать раз меньше.

    Диод D1 использовать можно практически любой кремневый с обратным напряжением не менее 40v, если вам не особо нужна супер точность в измерениях, то вполне подойдет КА220. Для более точного определения емкости придется поставить диод с небольшим падением напряжения в варианте прямого включения — Шоттки. Защитный супрессорный диод D2 должен быть рассчитан на обратное напряжение от 28v до 38v. Транзистор маломощный кремневый p-n-p проводимости: например КТ361 или его аналог.

    Измерение величины ЭПС выполнять в диапазоне напряжения 20v. Во время подключении коннектора внешнего измерителя, ESR-приставка к мультиметру сразу же переходит в режим работы тестирования емкости. При этом будет визуально отображено на приборе показание около 35v в диапазоне проверки 200v и 1000v (это в зависимости от использования супрессорного диода). В случае исследования емкости на 20 вольтах, показание будет отображено как «выход за границу измерения». Когда коннектор внешнего измерителя отсоединяется, то и ЭПС-приставка моментально переключается на режим работы как обыкновенного мультиметра.

    Заключение

    Принцип работы устройства — для начала работы прибора нужно включить в сеть адаптер, при этом происходит включение измерителя ЭПС, когда отключили ESR, то мультиметр автоматически переходит в режим выполнения штатных функций. Чтобы сделать калибровку аппарата нужно подобрать постоянный резистор, так чтобы соответствовало шкале. Для наглядности картина ниже:

    При замыкании щупов на шкале мультиметра будет отображено 0.00- 0.01, это показание означает погрешность прибора в диапазоне измерения до 1 Ом.

    Конденсатор - элемент электрической цепи, состоящий из проводящих электродов (обкладок), разделённых диэлектриком. Предназначен для использования его электрической ёмкости. Конденсатор, ёмкостью С, к которому приложено напряжение U, накапливает заряд Q на одной стороне и - Q - на другой. Ёмкость здесь в фарадах, напряжение - вольтах, заряд - кулоны. Когда ток силой 1 А протекает через конденсатор ёмкостью 1 Ф напряжение изменяется на 1 В за 1 с.

    Одна фарада ёмкость огромная, поэтому обычно применяются микрофарады (мкФ) или пикофарады (пФ). 1Ф = 106 мкФ = 109 нФ = 1012 пФ. На практике используются значения от нескольких пикофарад до десятков тысяч микрофарад. Зарядный ток конденсатора отличается от тока через резистор. Он зависит не от величины напряжения, а от скорости изменения последнего. По этой причине для измерения ёмкости требуются специальные схемные решения, применительно к особенностям конденсатора.

    Обозначения на конденсаторах

    Проще всего определить значение ёмкости по маркировке, нанесённой на корпус конденсатора.

    Электролитический (оксидный) полярный конденсатор, ёмкостью 22000 мкФ, рассчитанный на номинальное напряжение 50 В постоянного тока. Встречается обозначение WV - рабочее напряжение. В маркировке неполярного конденсатора обязательно указывается возможность работы в цепях переменного тока высокого напряжения (220 VAC).

    Плёночный конденсатор ёмкостью 330000 пФ (0.33 мкФ). Значение в этом случае, определяется последней цифрой трёхзначного числа, обозначающей количество нолей. Далее буквой указана допустимая погрешность, здесь - 5 %. Третьей цифрой может быть 8 или 9. Тогда первые две умножаются на 0.01 или 0.1 соответственно.

    Ёмкости до 100 пФ маркируются, за редкими исключениями, соответствующим числом. Этого достаточно для получения данных об изделии, так маркируется подавляющее число конденсаторов. Производитель может придумать свои, уникальные обозначения, расшифровать которые не всегда удаётся. Особенно это относится к цветовому коду отечественной продукции. По стёртой маркировке узнать ёмкость невозможно, в такой ситуации не обойтись без измерений.

    Вычисления с помощью формул электротехники

    Простейшая RC - цепь состоит из параллельно включённых резистора и конденсатора.

    Выполнив математические преобразования (здесь не приводятся), определяются свойства цепи, из которых следует, что если заряженный конденсатор подключить к резистору, то он будет разряжаться так, как показано на графике.

    Произведение RC называют постоянной времени цепи. При значениях R в омах, а C - в фарадах, произведение RC соответствует секундам. Для ёмкости 1 мкФ и сопротивления 1 кОм, постоянная времени - 1 мс, если конденсатор был заряжен до напряжения 1 В, при подключении резистора ток в цепи будет 1 мА. При зарядке напряжение на конденсаторе достигнет Vo за время t ≥ RC. На практике применяется следующее правило: за время 5 RC, конденсатор зарядится или разрядится на 99%. При других значениях напряжение будет изменяться по экспоненциальному закону. При 2.2 RC это будет 90 %, при 3 RC - 95 %. Этих сведений достаточно для расчёта ёмкости с помощью простейших приспособлений.

    Схема измерения

    Для определения ёмкости неизвестного конденсатора следует включить его в цепь из резистора и источника питания. Входное напряжение выбирается несколько меньшим номинального напряжения конденсатора, если оно неизвестно - достаточно будет 10–12 вольт. Ещё необходим секундомер. Для исключения влияния внутреннего сопротивления источника питания на параметры цепи, на входе надо установить выключатель.

    Сопротивление подбирается экспериментально, больше для удобства отсчёта времени, в большинстве случаев в пределах пяти - десяти килоом. Напряжение на конденсаторе контролируется вольтметром. Время отсчитывается с момента включения питания — при зарядке и выключении, если контролируется разряд. Имея известные величины сопротивления и времени, по формуле t = RC вычисляется ёмкость.

    Удобнее отсчитывать время разрядки конденсатора и отмечать значения в 90 % или 95 % от начального напряжения, в этом случае расчёт ведётся по формулам 2.2t = 2.2RC и 3t = 3RC. Таким способом можно узнать ёмкость электролитических конденсаторов с точностью, определяемой погрешностями измерений времени, напряжения и сопротивления. Применение его для керамических и других малой ёмкости, с использованием трансформатора 50 Hz, вычислением емкостного сопротивления - даёт непрогнозируемую погрешность.

    Измерительные приборы

    Самым доступным методом замера ёмкости является широко распространённый мультиметр с такой возможностью.

    В большинстве случаев, подобные устройства имеют верхний предел измерений в десятки микрофарад, что достаточно для стандартных применений. Погрешность показаний не превышает 1% и пропорциональна ёмкости. Для проверки достаточно вставить выводы конденсатора в предназначенные гнёзда и прочитать показания, весь процесс занимает минимум времени. Такая функция присутствует не у всех моделей мультиметров, но встречается часто с разными пределами измерений и способами подключения конденсатора. Для определения более подробных характеристик конденсатора (тангенса угла потерь и прочих), используются другие устройства, сконструированные для конкретной задачи, не редко являются стационарными приборами.

    В схеме измерения, в основном, реализован мостовой метод. Применяются ограничено в специальных профессиональных областях и широкого распространения не имеют.

    Самодельный С - метр

    Не принимая во внимание разные экзотические решения, такие как баллистический гальванометр и мостовые схемы с магазином сопротивлений, изготовить простой прибор или приставку к мультиметру по силам и начинающему радиолюбителю. Широко распространённая микросхема серии 555 вполне подходит для этих целей. Это таймер реального времени со встроенным цифровым компаратором, в данном случае используется как генератор.

    Частота прямоугольных импульсов задаётся выбором резисторов R1–R8 и конденсаторов С1, С2 переключателем SA1 и равняется: 25 kHz, 2.5 kHz, 250 Hz, 25Hz - соответственно положениям переключателя 1, 2, 3 и 4–8. Конденсатор Сх заряжается с частотой следования импульсов через диод VD1, до фиксированного напряжения. Разряд происходит во время паузы через сопротивления R10, R12–R15. В это время образуется импульс длительностью, зависимой от емкости Сх (больше ёмкость - длиннее импульс). После прохождения интегрирующей цепи R11 C3 на выходе появляется напряжение, соответствующее длине импульса и пропорциональное величине ёмкости Сх. Сюда и подключается (Х 1) мультиметр для измерения напряжения на пределе 200 mV. Положения переключателя SA1 (начиная с первого) соответствуют пределам: 20 пФ, 200 пФ, 2 нФ, 20 нФ, 0.2 мкФ, 2 мкФ, 20 мкФ, 200 мкФ.

    Наладку конструкции необходимо делать с прибором, который будет применяться в дальнейшем. Конденсаторы для наладки надо подобрать с ёмкостью, равной поддиапазонам измерений и как можно точнее, от этого будет зависеть погрешность. Отобранные конденсаторы поочерёдно подключаются к Х1. В первую очередь настраиваются поддиапазоны 20 пФ–20 нФ, для этого соответствующими подстроечными резисторами R1, R3, R5, R7 добиваются соответствующих показаний мультиметра, возможно придётся несколько изменить номиналы последовательно включённых сопротивлений. На других поддиапазонах (0.2 мкФ–200 мкФ) калибровка проводится резисторами R12–R15.

    При выборе источника питания следует учитывать, что амплитуда импульсов напрямую зависит от его стабильности. Интегральные стабилизаторы серии 78хх вполне здесь применимы Схема потребляет ток не более 20–30 миллиампер и конденсатора фильтра ёмкостью 47–100 микрофарад будет достаточно. Погрешность измерений, при соблюдении всех условий, может составить около 5 %, на первом и последнем поддиапазонах, по причине влияния ёмкости самой конструкции и выходного сопротивления таймера, возрастает до 20 %. Это надо учитывать при работе на крайних пределах.

    Конструкция и детали

    R1, R5 6,8k R12 12k R10 100k C1 47nF

    R2, R6 51k R13 1,2k R11 100k C2 470pF

    R3, R7 68k R14 120 C3 0,47mkF

    R4, R8 510k R15 13

    Диод VD1 - любой маломощный импульсный, конденсаторы плёночные, с малым током утечки. Микросхема - любая из серии 555 (LM555, NE555 и другие), русский аналог - КР1006ВИ1. Измерителем может быть практически любой вольтметр с высоким входным сопротивлением, под который проведена калибровка. Источник питания должен иметь на выходе 5–15 вольт при токе 0.1 А. Подойдут стабилизаторы с фиксированным напряжением: 7805, 7809, 7812, 78Lxx.

    Вариант печатной платы и расположение компонентов

    Видео по теме

    Предлагаемый измеритель предназначен для любительских измерений, не требующих высокой точности. При своей простоте он обладает довольно широкими пределами измерений. Он выполнен в виде приставки и позволяет использовать уже имеющиеся у радиолюбителя блоки питания и измерительные приборы — стрелочные микроамперметры.

    Прибор имеет следующие характеристики. Фактический диапазон измеряемых величин — 0,5…30000 мкФ — перекрывается поддиапазонами 0…50, 0…500 и 0…30000 мкФ. При напряжении питания 9В потребляемый ток не превышает 10 мА.

    Принцип работы прибора основан на измерении величины пульсации выпрямленного напряжения. Синусоидальное напряжение частотой 16…20Гц с генератора на микросхеме DA1 выпрямляется диодом VD3 и далее поступает на измеряемый конденсатор и один из параллельно подключенных ему нагрузочных резисторов R7-R9. Чем меньше резистор, тем больше пульсации. С увеличением емкости конденсатора величина пульсаций падает. Далее пульсирующее напряжение через конденсатор С4 калибровочный переменный резистор R10 и выпрямительный мост на диодах VD4-VD7 поступает на измерительный прибор — микроамперметр.

    При измерении больших емкостей уровень низкочастотных пульсаций сильно уменьшается, и для их измерений в прибор введен усилительный каскад на микросхеме DA2. Генератор синусоидальных колебаний представляет собой один из возможных вариантов RC-генератора с мостом Вина.

    Микросхемы (DA1, DA2) можно заменить любыми ОУ общего назначения. Диоды VD1-VD7 любые германиевые высокочастотные. Конденсаторы C1, C3, C4 — серии К73-17 (возможно параллельное соединение конденсаторов меньшей емкости), С2, С5 — К50-16. Подстроечные резисторы R6-R9 — СПЗ-38 или аналогичные. Переменный резистор R10 — типа СП2-2. Переключатель SA1 — малогабаритный ЗПЗН.

    Настройку прибора производят начиная с генератора DA1. Подстроечным резистором R6 устанавливают на выходе максимальную амплитуду синусоидального сигнала. К розетке Х2 подключают измерительный прибор, например, многопредельный стрелочный ампервольтметр в режиме микроамперметра, а его предел устанавливают на 60-200 мкА. При наличии отдельного микроамперметра чувствительностью до 200 мкА следует отдать предпочтение ему.

    Резисторы R7-R9 устанавливают в положение, близкое к максимальному сопротивлению, переключатель SA1 — в первое положение. Регулятором R10 «калибровка» устанавливают стрелку микроамперметра на максимальное значение шкалы, что будет соответствовать значению емкости Cx= 0. Затем подключают к X3 образцовые конденсаторы и градуируют шкалу. Масштаб шкалы можно в небольших пределах изменять подстроечным резистором R7 (R8 — для второго и R9 — для третьего диапазона), после чего необходимо заново провести калибровку. Аналогично проводится настройка при установке SA1 во второе положение. При настройке в третьем диапазоне следует убедиться в правильной работе микросхемы DA2 и установить нужное усиление подбором резистора R13. Если на втором пределе стрелка не отклоняется до конца шкалы, можно увеличить емкость конденсатора С4. Точность прибора во многом зависит от точности образцовых конденсаторов и градуировки шкалы.