Стабилизатор переменного напряжения своими руками 220в. Как сделать стабилизатор напряжения

Современная сеть электропитания работает таким образом, что в ней очень часто меняется напряжение. Конечно, изменение тока являются допустимым, но в любом случае оно не должно быть больше десяти процентов от номинальных 220 вольт.

Данная норма отклонения должна соблюдаться как в сторону уменьшения, так и в сторону увеличения напряжения. Однако такое состояние сети электропитания является большой редкостью, так как ток в ней характеризуется большими изменениями.

Такие изменения очень не «нравятся» электроприборам, которые могут потерять не только свои проектные возможности, а еще могут выйти из строя. Для устранения такого негативного сценария люди используют различные стабилизаторы.

Сегодня рынок предлагает очень много различных моделей, большая часть из которых стоит больших денег. Другая же часть не может похвастаться надежностью работы.

И что же делать тогда, если нет желания переплачивать или покупать некачественный продукт? В этой ситуации можно сделать стабилизатор напряжения своими руками.

Конечно, можно сделать различные виды стабилизационных приборов. Одним из наиболее эффективных является симисторный. Собственно его сборка и будет рассмотрена в этой статье.

Характеристики собираемого устройства

Этот стабилизационный аппарат не будет чувствительным к частоте напряжения, которое подается через общую сеть. Выравнивание тока будет осуществляться при условии, если на входе будет больше 130-ти и меньше 270-ти вольт.

Подключенные приборы будут получать ток, который имеет больше 205-ти и меньше 230-ти вольт. К этому стабилизационному устройству можно будет подключить электроприборы, общая мощность которых может быть равной шести киловаттам.

Стабилизационный прибор будет осуществлять переключение нагрузки за 10 миллисекунд.

Устройство стабилизационного прибора

Общая схема этого стабилизационного устройства подается на рисунке:

Рис. 1. Строение стабилизационного прибора.

  1. Блока питания, в состав которого входят конденсаторы С2 и С5, компаратор DA1, тепло-электрический диод VD1 и трансформатор Т1.
  2. Узла, который будет задерживать включение нагрузки. Он состоит из резисторов R1-R5, транзисторов VT1-VT3 и конденсатора С1.
  3. Выпрямителя, который будет измерять амплитуду напряжения. Он состоит из конденсатора С2, диода VD2, стабилитрона VD2 и делителей R14, R13.
  4. Компаратора напряжения. Его состав предполагает наличие резисторов R15-R39 и компараторов DA3 и DA2.
  5. Логического контроллера, который находится на микросхемах с отметкой DD1…5.
  6. Усилителей, которые в основе имеют транзисторы VT4…12 и токоограничивающие резисторы R40...48.
  7. Индикаторных светодиодов HL1-HL9.
  8. Оптронных ключей (их количество равняется цифре семь). Каждый оснащается симисторами VS1…7, резисторами R6…12 и оптосимисторами U1-U7.
  9. Автоматического выключателя-предохранителя QF1.
  10. Автоматического трансформатора Т2.

Принцип работы

Каким же образом работает наш стабилизатор сетевого напряжения, который легко делается своими руками?

После того, как включается питание конденсатор С1 находится в разряженном состоянии, транзистор VT2 открыт, а VT2 является закрытым. Также закрытым является транзистор VT3. Именно через него будет подаваться ток на каждый светодиод и симисторный оптотрон.

Поскольку этот транзистор является закрытым, светодиоды не светятся, каждый симистор является закрытым и нагрузка отключена. В это время электрический ток проходит через резистор R1 и попадает в С1. Далее происходит зарядка этого конденсатора.

Интервал задержки длится всего лишь три секунды. За это время осуществляются все переходные процессы, и после окончания происходит срабатывание триггера Шмитта, основу которого составляют транзисторы VT1 и VT2.

Напряжение, которое выходит с третьей обмотки Т1, выпрямляется диодом VD2 и конденсатором С2. Далее ток проходит через делитель R13…14. Из R14 напряжение, уровень которого является пропорциональным количеству вольт в сети, входит в каждый неинвертирующий вход компараторов.

Количество компараторов равняется восьми и все они находятся на микросхемах DA2 и DA3. В этот же момент на инвертирующий вход каждого компаратора входит постоянный образцовый ток. Его подают резисторные делители R15...23.

После этого в игру вступает контроллер, который осуществляет обработку сигнала на входе у каждого компаратора.

Особенности работы

Когда входное количество вольт является меньшим 130-ти, на выходах каждого компаратора фиксируется логический уровень низкой величины. В это время в открытом состоянии находится транзистор VT4 и мигает первый светодиод.

Он сообщает о том, что сеть характеризуется очень низким уровнем напряжения. Это означает, что регулируемый стабилизатор напряжения, сделанный своими руками, не может выполнить свою функцию.

Каждый его симистор является закрытым и нагрузка находится в отключенном состоянии.

Когда число входных вольт колеблется от 130-ти до 150-ти, то сигналы 1 и А характеризуются высоким значением логического уровня. Этот уровень всех других сигналов является низким. В этой ситуации открывается транзистор VT5 и загорается второй светодиод.

Происходит открытие оптосимистора U1.2 и симистора VS2. Именно через последний будет проходить нагрузка. Далее она войдет в верхний вывод обмотки автоматического трансформатора Т2.

Если входное количество вольт находится в диапазоне 150-170 вольт, то сигналы 2, 1 и В характеризуются высоким значением логического уровня. Этот уровень всех других сигналов является низким.

При таком входном количестве вольт происходит открытие транзистора VT6, включение третьего светодиода. В это время открывается второй симистор (VS2) и ток передается на той вывод обмотки Т2, который является вторым сверху.

Созданный своими руками стабилизатор напряжения, который сможет способен подать 220 В, будет переключать соединения с обмотками второго трансформатора при условии, если уровень входного напряжения будет достигать 190-ти, 210-ти, 230-ти и 250-ти вольт.

Для производства такого стабилизатора нужно взять печатную плату, которая имеет размеры 115х90 миллиметров. Основным элементом, из которого она должна быть изготовлена, должен быть односторонний фольгированный стеклотексолит. Размещение элементов на плате подается ниже.

Рис. 2. Схема размещения элементов на плате.

Такую плату можно легко напечатать на лазерном принтере. Далее используют утюг. Часто для создания файлов печати, в которых и хранятся макеты таких плат, используется программа Sprint Loyout 4.0. Именно с помощью нее удобно изготавливать печатные платы.

Изготовление трансформаторов

Что касается трансфоматоров Т1 и Т2, то их можно сделать вручную.

Для изготовления Т1, мощность которого будет рассчитана на три киловатта, нужно подготовить магнитопровод, площадь сечения которого должна составлять 1,87 кв. сантиметров, а также три провода ПЭВ-2.

Первый должен иметь диаметр 0,064 миллиметра. С помощью него создают первую обмотку. Число ее витков должно составлять 8 669.

Два других провода используются для создания других двух обмоток. Эти провода должны иметь одинаковый диаметр, а именно 0,185 миллиметров. Количество витков в каждой обмотке должно равняться 522.

Полезный совет: Также можно взять два готовых трансформатора ТПК-2-2x12В, которые должны быть последовательно соединены.

Схема соединения ниже:

Рис. 3. Соединение двух трансформаторов ТПК-2-2x12В.

Для создания трансформатора Т2 с мощностью в 6 киловатт, используют тороидальный магнитопровод. Обмотку делают с помощью провода ПЭВ-2. Количество витков - 455.

В этом трансформаторе нужно сделать семь отводов. Первые три отводы мотаются с помощью провода, который в диаметре имеет три миллиметра. Для создания других четырех используются шины. Их сечение должно составлять 18 квадратных миллиметров. Благодаря сечению такой величины Т2 не будет греться.

Отводы делают на 398, 348, 305, 266, 232 и 203 витках. Отсчет витков начинается с самого нижнего отвода. При этом ток из сети должен идти через отвод 266-го витка.

Необходимые компоненты

Что касается других элементов стабилизатора, который собирается своими руками и который будет подавать постоянное напряжение, то их лучше купить в магазине.

Так, нужно осуществить закупку:

  1. - оптронов симисторных MOC3041 (их нужно семь штук);
  2. - семи симисторов BTA41-800B;
  3. - стабилизатора КР1158ЕН6А (DA1);
  4. - двух компараторов LM339N (для DA2 и DA3);
  5. - двух диодов DF005M (на схеме VD2, VD1)
  6. - трех проволочных резисторов СП5-2 или СП5-3 (для R25, R14 и R13);
  7. - семи резисторов С2-23, которые имеют допуск не менее одного процента (для R16...R22);
  8. - тридцати любых резисторов, имеющих допуск в 5 процентов;
  9. - семи токоограничительных резисторов. Они будут пропускать ток, сила которого равняется 16 мА (для R41-47).
  10. - четырех любых оксидных конденсаторов (для С5, С1-С3);
  11. - четырех керамических или пленочных конденсаторов (С4, С6...С8);
  12. - включателя-предохранителя.

Полезный совет: семи симисторных оптронов MOC3041 возможно заменить MOC3061. Стабилизатор КР1158ЕН6А можно легко заменить КР1158ЕН6Б. Компаратор К1401СА1 является отличным аналогом LM339N. В качестве диодов можно применить и КЦ407А.

Микросхему КР1158ЕН6А надо монтировать на теплоотвод. Для его создания берут алюминиевую пластину, площадь которой должна превышать 15 квадратных сантиметров.

Также на теплоотвод должны устанавливаться симисторы. Для всех семи симисторов можно использовать один теплоотвод, который должен иметь охлаждающую поверхность. Ее площадь должна быть большей, чем 1 600 квадратных сантиметров.

Наш стабилизатор переменного напряжения, который изготавливается своими руками, должен быть оснащен и микросхемой КР1554ЛП5, которая будет выполнять роль микроконтроллера.

Выше отмечалось, что прибор предполагает наличие девяти светодиодов. На представленной выше схеме они располагаются таким образом, чтобы могли попасть в соответствующие отверстия на передней панели самого прибора.

Полезный совет: если конструкция корпуса не позволяет смонтировать их так, как показано на схеме, то их можно разместить и на той стороне, на которые находятся печатные проводники.

Светодиоды должны быть мигающими.

Полезный совет: можно взять и такие светодиоды, которые не мигают. Они должны выдавать красный цвет повышенной яркости. Для этого можно взять L1543SRC-Е или АЛ307КМ.

Конечно, можно осуществить сборку и более простых стабилизационных приборов, которые будут обладать своими особенностями.

Преимущества и недостатки перед фабричными

Если говорить о преимуществах стабилизационных устройств, сделанными своими руками, то главной из них является меньшая стоимость. Как уже отмечалось выше, производители запрашивают довольно высокие цены. Сборка своего же обойдется дешевле.

Еще одним преимуществом можно назвать и возможность облегченного самостоятельного ремонта стабилизатора напряжения, который был сделан своими руками. Здесь имеется в виду то, что каждый, кто собрал такое устройство, разбирается в его строении и понимает принцип работы.

В случае выхода из строя какого-либо элемента разработчик может легко обнаружить сломанный компонент и заменить его. Легкая замена обусловлена и тем, что практически каждый элемент ранее был куплен в магазине и его легко найти во многих других.

К недостаткам можно отнести невысокий уровень надежности таких стабилизаторов. На предприятиях существует очень много измерительного и специального оборудования, которое дает возможность разработать очень качественные модели стабилизационных приборов.

Также предприятия имеют большой опыт в создании различных моделей и допущенные ранее ошибки однозначно исправляются. Это сказывается как на качестве, так и надежности заводских стабилизационных приборов.

Недостатком является и сложная настройка.

Видео.

На видео ниже представлено, как собрать стабильный регулятор напряжения, например для управления лампами накаливания и светодиодами.

В современной жизни ни один человек не может обойтись без использования различных электроприборов. Они сумели стать нашими лучшими помощниками, ведь дают возможность развлекаться, готовить различные вкусные блюда, продолжат пригодность различных продуктов, облегчают уборку и различные ремонтные работы.

Большинство из таких приборов разрабатывается с учетом того, что напряжение в домашней электрической сети должно равняться 220-ти вольтам, или же оно не будет характеризоваться различными колебаниями.

Для самых электроприборов стабильность напряжения является нужной для того, чтобы каждый его элемент выполнял свои функции на том уровне, который определил сам производитель. Также стабильность в электросети является необходимой и для устранения возможности перегорания отдельных элементов электроприборов.

И для того чтобы каждый электроприбор и его комплектующие могли выполнять свои целевые функции, владельцам домов или квартир необходимо использовать стабилизационные устройства. Они могут обеспечить не только оптимальную работу любимого прибора, но и уберечь его от сгорания.

Стабилизатор Энергия

Стоит отметить, что в быту можно использовать стабилизационные приборы постоянного и переменного напряжения. В тех случаях, когда количество вольт в сети колеблется на величину, большую на 10 процентов от номинальной величины (220 В), на свое вооружение нужно

Как правило, в современных электронных приборах для подачи электричества со стабильным уровнем применяют импульсные блоки питания.

Однако, если нужно стабилизировать электричество для холодильников, микроволновых печей, насосов и кондиционеров, то импульсные приборы стабилизации тока уже не подойдут.

Причина этого кроется в том, что существует потребность во внешней стабилизации переменного напряжения. Здесь на помощь придут бытовые стабилизаторы напряжения, которые на выходе способны обеспечить постоянные 220 вольт.

Учитывая тот факт, что такие устройства имеют много разновидностей, в дальнейшем будет рассмотрен каждая разновидность в отдельности. При этом вы сможете заглянуть и под корпус каждого вида стабилизационного устройства.

Общее строение стабилизационных устройств

Бытовые стабилизаторы могут быть электромеханическими, релейно-трансформаторными и электронными. Также на рынке еще можно встретить феррорезонансные стабилизационные приборы. Они пользовались большой популярностью в прошлом, однако их сегодня практически не используют.

Люди отказываются от них через большое количество недостатков.

Стоит отметить, что независимо от вида стабилизаторы работают по похожей схеме. Эта схема предусматривает наличие:

  1. - трансформатора;
  2. - регулирующего элемента;
  3. - управляющего элемента.

Данную схему можно увидеть на рисунке, который приводится ниже.

рис.1 схема стабилизатора

На этой схеме трансформатор обозначен, как Т1. Регулирующий элемент обозначается РЭ, управляющий элемент - УЭ. Задачей трансформатора является либо повышение, либо понижение напряжения, если оно не является равным 220-ти вольтам.

Для того, чтобы он мог выполнять эту цель, производители монтируют регулирующий элемент. Именно он управляет работой трансформатора. Чтобы этот регулирующий компонент «знал», как управлять трансформатором, в стабилизатор монтируют управляющий элемент.

Он осуществляет измерение напряжения на входе, сравнивает его с оптимальным напряжением и дает необходимую команду регулирующему элементу.
Каждый стабилизационный прибор работает по такой схеме.
Разница между ними заключается в строении регулирующих элементов и особенностях трансформатора.

Схема электромеханического стабилизатора

Наиболее простым по своему строению является электромеханическое стабилизационное устройство. Оно предусматривает наличие:

  1. Регулируемого автотрансформатора или ЛАТРа.
  2. Сервопривода с редуктором и щеткой.
  3. Электронной схемы.

Основным его элементом является лабораторный ЛАТР или бытовой регулирующий автоматический трансформатор. Благодаря применению последнего компонента этот прибор может похвастаться КПД высокого уровня. Сверху над этим трансформатором монтируется двигатель, который имеет малые размеры.

Схема стабилизатора

Этот двигатель имеет в себе редуктор. Двигатель имеет достаточную мощность, чтобы поворачивать бегунок в трансформаторе. Оптимальным условием работы этого двигателя является обеспечение одного полного оборота бегунка в течение десяти-двадцати секунд.

В конце бегунка находится щетка, которая в среднем превышает в 2,2 раза диаметр провода обмотки трансформатора. Собственно до этих проводов и прикасается сама щетка.
Конечно, работа двигателя зависит от команд электронной схемы. В тех случаях, когда происходят изменения в токе на входе, электронная схема обнаруживает их и дает указание двигателю сместить бегунок на определенную величину, в результате чего на выходе получаются желаемые 220 вольт.

Характеристики электромеханического преобразователя

Такая простая конструкция этого типа стабилизатора напряжения, который на выходе выдает 220 вольт и который часто выпускается под маркой «Ресанта», является его преимуществом. В список преимуществ входит и возможность обеспечения высокой точности уровня выходного напряжения.

Эта точность равняется ±3 процентам. Что касается диапазона входных вольт, то он довольно большой. Так для некоторых моделей он колеблется в пределах 130-260-ти вольт.

Простая конструкция является причиной и некоторых недостатков. Так при перемещении щетки (бегунка) слышно гул. При этом места контакта могут искриться.

Полезный совет: такая щетка довольно быстро изнашивается. Потому за ее состоянием нужно следить каждый год. Как показывает практика, каждые три года нужно осуществлять замену щетки.

Главная слабость и ремонт

Главной слабостью этого стабилизатора является сервопривод (он же двигатель). Во время работы устройства этот двигатель постоянно работает. Его ротор не перестает крутиться ни на минуту. Конечно, следствием этого является быстрый износ и преждевременный выход из строя.Выходом из этой ситуации будет замена изношенного двигателя.

Полезный совет: двигатель можно не заменять, а попробовать отреставрировать. Для этого его нужно провести его отключение от схемы устройства и подсоединить к мощному источнику питания. На выводы сервопривода подают 5 ватт, проводя смену полярности.

В конечном итоге весь «мусор», который накопился на щетке, отжигается. После этого двигатель может работать еще некоторое время.

Один из самых главных недостатков кроется в медленной реакции. Поэтому, сфера применения таких стабилизаторов с выходным напряжением 220 вольт является несколько ограниченной.
В частности, их не следует применять для электроприборов, которые могут быстро сгореть от высокого напряжения. В основном этими электроприборами являются различные электронные устройства и высокотехнологичные установки.

Схема релейных стабилизационных устройств

Что касается релейно-трансформаторных и электронных стабилизаторов напряжения, то они имеют одинаковую схему построения. Главная разница заключается в том, что в первых в качестве регулирующего элемента используется реле, в других - симисторы или тиристоры.

Эти типы стабилизационных устройств называются еще ступенчатыми. Это означает то, что выравнивание тока происходит ступенями.

Регулирующий элемент также называют еще ключом. Количество таких ключей зависит от модели. В наиболее дешевых моделях находится пять таких ключей. Каждый ключ может подключаться к определенной обмотке автоматического трансформатора.

В результате замыкания им определенной части обмотки происходит изменение выходного количества вольт.

Общая схема таких стабилизационных устройств подается на рис. 2:

Релейные стабилизаторы могут изменять количество выходных вольт в 3-6 ступеней. Главным коммутирующим элементом этих устройств являются электромагнитные реле, которые подключают определенные обмотки трансформатора.

Количество обмоток, которое является необходимым для выравнивания тока, определяется микропроцессором. Он передает команды преходящим ключам, которые и управляют электрическим реле.
Подытоживая, можно отметить, что схема релейного стабилизатора переменного напряжения, который на выходе выдает 220 вольт, также является простой.

Характерные особенности релейных приборов

Эти стабилизационные приборы характеризуются точностью напряжения на выходе, которая составляет ±8 процента. Конечно, этот показатель хуже, чем показатель выше описанного типа стабилизатора. Однако он находится в пределах требований, установленных государством.

Особенностью работы этих стабилизационных устройств является то, что когда в них входит 195 вольт, то на выходе будет 233 вольта. Когда количество входных вольт увеличится на 3 вольта. То на выходе уже будет 236.

Релейный стабилизатор разобранный

Однако, когда входное напряжение будет равно 200 вольтам, состоится переключение реле и на выходе уже будет 218 вольт. Таким образом устройство работает и при понижении количества вольт на входе.

Проблему с точностью отлично компенсирует скорость реакции на изменения в токе. По словам производителей на изменение тока нужно от 20 миллисекунд. Практика показывает, что это происходит в течение 100-150 миллисекунд.
Релейные стабилизационные приборы могут выравнивать входной ток, минимальное напряжение которого может равняться 140 вольтам, максимальное - 270 вольтам. Допустимой является и перегрузка на 10 процентов от нагрузки, которую рекомендует сам производитель.

Проблемные места и их ремонт

Во время процесса коммутации на контактах реле постоянно образуется дуга. Ее образование приводит к разрушению контактов. Именно контакты являются слабым местом этих стабилизационных устройств.

Контакты могут или обгорать, или залипать. Соответственно, главное внимание во время любого обслуживания должно направляться на состояние контактов.
В том случае, когда реле выходят из строя, ломаются и транзисторные ключи. В случае поломки реле проводят их полную замену.

Полезный совет: реле можно отреставрировать. Данный процесс заключается в снятии их крышки, освобождении их от пружины и очистке. Для очистки берут наждачную бумагу «нулевка». Очистить нужно как нижний, так и верхний, так и подвижный контакты. После этого проводят очистку бензином и собирают реле.

Во время ремонтных работ также следует провести проверку кварцевого резонатора и каждого электролитического конденсатора, который находится на плате контроллера.

Полезный совет: во время проверочных или диагностических работ входной ток нужно подавать сразу на ЛАТР. Благодаря этому входной ток можно будет изменять в больших величинах. Роль нагрузки должна выполнять 220-вольтная лампа накаливания.

Симисторные приборы

Кроме вышеупомянутых стабилизаторов, очень применяемым в быту является симисторный электронный стабилизатор. Схема такого стабилизатора напряжения, который способен быстро обеспечить на выходе 220 вольт, является почти такой, как и релейного.

Однако вместо реле уже используются симисторы. Симисторы являются достаточно сложными в управлении. Они должны всегда включаться, когда синусоида напряжения находится в нулевой точке. Это дает возможность избежать искажения самой синусоиды.

Симисторный стабилизатор. Внешний вид

Конечно, определением момента для их включения занимается сам процессор. Включение симистора осуществляется благодаря подаче на него сильного импульса. Кроме замера напряжения и определения момента включения симистора, процессор также проверяет состояние симистора, то есть является ли он включенным или выключенным.

После выполнения этих операций процессор дает команду на включение симистора. Выполнение этой совокупности действий длится не более одной микросекунды. Также очень быстро включается и симистор. В общем, время реакции не превышает десяти миллисекунд.

Благодаря таким особенностям изменение напряжения происходит очень быстро. Также электронные стабилизационные приборы вместо симистора могут иметь тиристоры. При этом тиристоры часто применяются в тех стабилизаторах напряжения, которые превращают 220 вольт в 110 вольт.

Большие скорости работы процессора и симисторов позволяют также создавать и двухкаскадные электронные стабилизационные устройства. Это означает, что выравнивание напряжения происходит в два этапа.
Во время первого этапа первый каскад делает грубое выравнивание тока. Во время второго этапа проводится идеальное выравнивание.

Двухкаскадные симисторные устройства

Преимуществом использования двух каскадов является то, что появляется возможность в использовании небольшого количества симисторов. Так, на каждом каскаде можно использовать по четыре симистора. В результате это дает возможность выбирать между 16-ю способами комбинации обмоток трансформатора.

Схема двухкаскадного стабилизатора

Если на обоих каскадах используется по шесть симисторов, то количество комбинаций подключения обмоток уже будет равняться 36-ти.
Использование каскадов несколько снижает скорость реакции трансформатора.

В общем, время реакции занимает 20 миллисекунд. Такая скорость выравнивания тока для бытовой техники является более чем приемлемой.

Такие стабилизаторы можно применять не только в быту, но и многих промышленных сферах. Они способны обеспечить выходные 220 вольт при условии, если на входе будет не менее 140 и не более 270 вольт.

Зачастую для безопасного использования, например, телевизора, как правило, в сельской местности, нужен однофазный стабилизатор напряжения 220В , который при сильном понижении напряжения в электросети выдает на своем выходе номинальное выходное напряжение 220 вольт.

Помимо этого, при эксплуатации большинства типов бытовой электронной техники желательно использовать такой стабилизатор напряжения, который не создает изменений в синусоиде выходного напряжения. Схемы аналогичных стабилизаторов на 220 вольт приводятся во многих журналах по радиоэлектронике.

В данной статье приведем пример одного из вариантов подобного устройства. Схема стабилизатора в зависимости от фактического напряжения в сети имеет 4 диапазона автоматической установки выходного напряжения. Это способствовало значительному расширению границ стабилизации 160…250 вольт. И при всем при этом напряжение на выходе обеспечивается в пределах нормы (220В +/- 5%).

Описание работы однофазного стабилизатора напряжения 220 вольт

В электрическую схему устройства входят 3 пороговых блока, выполненные по принципу , состоящие из стабилитрона и резисторов (R2-VD1-R1, VD5-R3-R6, R5-VD6-R6). Так же в схеме имеются 2 транзисторных ключа VT1 и VT2, которые управляют электромагнитными реле К1 и К2.

Диоды VD2 и VD3 и фильтрующий конденсатор С2 образуют источник постоянного напряжения для всей схемы. Емкости С1 и С3 предназначены для гашения незначительных скачков напряжения в сети. Конденсатор С4 и сопротивление R4 — “искрогасительные” элементы. Для предотвращения выбросов напряжения самоиндукции, в обмотках реле при их отключении в схему добавлены два диода VD4 и VD7.

При безупречной работе трансформатора и пороговых блоков, каждый из 4-х диапазонов регулирования создавал бы интервал напряжения от 198 до 231 вольт, а вероятное сетевое напряжение могло бы находиться в районе от 140…260 вольт.

Тем не менее, в действительности нужно брать во внимание разброс параметров радиодеталей и нестабильность коэффициента трансформации трансформатора при разных нагрузках. В связи с этим у всех 3-х пороговых блоков диапазон выходного напряжения уменьшены по отношению к выходному напряжению: 215±10 вольт. Соответственно сузился и интервал колебания на входе до 160…250 вольт.

Этапы работы стабилизатора:

1. Когда напряжение в электросети меньше 185 вольт, на выходе выпрямителя напряжение мало, для того чтобы сработал один из пороговых блоков. В этот момент контактные группы обоих реле находятся, так как указано на принципиальной схеме. Напряжение на нагрузке равно напряжению сети плюс напряжение вольтодобавки, снимаемое с обмоток II и III трансформатора Т1.

2. Если же напряжение в сети находится в диапазоне 185…205 вольт, то стабилитрон VD5 находится в открытом состоянии. Ток идет через реле К1, стабилитрон VD5 и сопротивления R3 и R6. Этого тока не хватает для того чтобы сработало реле К1. Из-за падения напряжения на R6 происходит открытие транзистора VT2. Этот транзистор в свою очередь включает реле К2 и контактная группа К2.1 переключает обмотку II (вольтодобавка)

3. Если же напряжение в сети находится в диапазоне 205…225 вольт, то в открытом состоянии уже находится стабилитрон VD1. Это приводит к открытию транзистора VT1, по причине этого отключается второй пороговый блок и соответственно транзистор VT2. Реле К2 отключается. В тоже время включается реле К1 и контактной группой К1.1. переходит в другое положение, при котором обмотки II и III не задействованы и поэтому на выходе напряжение будет такое же как и на входе.

4. Если же напряжение в сети находится в диапазоне 225…245 вольт открывается стабилитрон VD6. Это способствует активации третьего порогового блока, что приводит к открытию обоих транзисторных ключей. Оба реле включены. Сейчас уже к нагрузки подключена обмотка III трансформатора Т1, но в противофазе с сетевым напряжением (“минусовая” вольтодобавка). На выходе в данном случае также будет напряжение в районе 205…225 вольт.

При настройке диапазона регулирования нужно тщательно подобрать стабилитроны, поскольку, как известно, они могут значительно отличаться разбросом напряжения стабилизации.

Вместо КС218Ж (VD5) возможно применить стабилитроны КС220Ж. Данный стабилитрон непременно должен быть с двумя анодами, поскольку в интервале сетевого напряжения 225…245 вольт, когда стабилитрон VD6 открывается, открываются и оба транзистора, цепь R3 — VD5 шунтирует сопротивление R6 порогового блока R5-VD6-R6. Для ликвидации шунтирующего воздействия, стабилитрон VD5 должен быть с двумя анодами.

Стабилитрона VD5 на напряжение не более 20В. Стабилитрон VD1 — КС220Ж (22 В); возможно собрать цепь из двух стабилитронов - Д811 и Д810. Стабилитрон КС222Ж (VD6) на 24 вольт. Его возможно поменять на цепь из стабилитронов Д813 и Д810. Транзисторы из серии . Реле К1 и К2 - РЭН34, паспорт ХП4.500.000-01.

Трансформатор собран на магнитопроводе ОЛ50/80-25 из стали Э360 (или Э350). Лента толщиной — 0,08 мм. Обмотка I — 2400 витков намотанных проводом ПЭТВ-2 0,355 (для номинального напряжения 220В) . Обмотки II и III равные, содержат каждая по 300 витков провода ПЭТВ-2 0,9 (13,9 В).

Настраивать стабилизатор необходимо при подключенной нагрузке, для того чтобы была учтена нагрузка на трансформатора Т1.

Современная жизнь сопряжена с постоянным использованием различной техники, а некоторые сферы просто немыслимы без нее. Естественно, каждый человек желает, чтобы срок службы таких приборов был максимален, некоторые с этой целью покупают только продукцию известных брендов для большей надежности. Однако не всегда высокая стоимость гарантирует сохранность в критических эксплуатационных условиях. К таковым относятся резкие перепады напряжения сети. Особенно это касается той категории бытовой техники, которая подразумевает постоянное сетевое подключение, например, холодильник.

Для того, чтобы обезопасить себя от неприятных последствий подобных скачков напряжения можно обзавестись специальным техническим устройством, стабилизирующим выходной ток. Для регулировки напряжения используется два метода:

1. Механический. Для этого способа используется линейный стабилизатор, состоящий из 2-х колен и реостата, соединяющего их. Напряжение поступает на первое колено и через реостат передается второму, которое раздает поток далее. Данный метод эффективен в условиях небольшой разницы входного и выходного тока, в других случаях КПД снижается.

2. Импульсный. В конструкцию стабилизатора входит выключатель, периодически разрывающий цепь на определенное время. Это дает возможность подавать ток порционно и накапливать его равномерно в конденсаторе. После полной зарядки конденсатора к приборам подается выровненный поток без скачков.

Основным недостатком данного способа является невозможность задать конкретную величину параметра. Поэтому, если вы решили собрать стабилизатор напряжения 220В своими руками, ориентироваться нужно на механический метод. Для создания простого линейного однофазного выравнивателя тока потребуются:

  • Трансформатор;
  • Конденсаторы;
  • Резисторы;
  • Диод;
  • Провода, которыми будут соединяться микросхемы.

Трансформатор представляет собой пару катушек, которые образуют индуктивную электромагнитную связь, т.е. попадая на первичную обмотку, ток ее заряжает, а возникающее электромагнитное поле заряжает другую катушку. Такая взаимосвязь напряжения (U), силы тока (I) и числа витков (N) на обеих обмотках выражается формулой:

I2/I1 = N2/N1 = U2/U1

Сами индуктивные катушки можно найти в каждом магазине электротехники. Количество витков на первой не должно быть ниже 2000. Замерив напряжение в сети, можно рассчитать необходимое количество витков на вторичной обмотке. Например, фактическое напряжение 198 В, тогда вторая катушка должна иметь х/2000 = 220/198 = 2223 витка. По такому же принципу определяется вырабатываемая сила тока. По этой схеме при резком увеличении мощности на входе, напряжение пропорционально увеличится и на выходе. Поэтому для регулировки подобных ситуаций необходим реостат, изменяющий сопротивление сети. Путь, по которому следует ток после трансформатора, отмечается на микросхеме-стабилизаторе.

Из трансформатора ток выводится на конденсаторы одинаковой емкости для накопления и выравнивания потока, их потребуется примерно 16 штук. Далее конденсаторы необходимо подсоединить к реостату. Его сопротивление при напряжении 220 В и силе тока 4,75 А (среднее значение диапазона 4,5-5 А) после трансформатора должно быть 46 Ом. Для максимально плавного выравнивания напряжения можно установить несколько реостатов, распределяя сопротивление на каждый поровну. После того, как цепь пройдет реостаты, она снова соединяется в единый поток и следует на диод, который подключается непосредственно к розетке.

Данные операции применимы к проводу с фазой, ноль напрямую пропускается к розетке. Подобные стабилизаторы лучше всего подходят к постоянным условиям напряжения и собираются, руководствуясь параметрами конкретного прибора, что значительно повышает эффективность устройства.