Свойства детерминанта произведения матриц доказательство. Произведение двух матриц: формула, решения, свойства

Определение. Произведением двух матриц А и В называется матрица С , элемент которой, находящийся на пересечении i -й строки и j -го столбца, равен сумме произведений элементов i -й строки матрицы А на соответствующие (по порядку) элементы j -го столбца матрицы В .

Из этого определения следует формула элемента матрицы C :

Произведение матрицы А на матрицу В обозначается АВ .

Пример 1. Найти произведение двух матриц А и B , если

,

.

Решение. Удобно нахождение произведения двух матриц А и В записывать так, как на рис.2:

На схеме серые стрелки показывают, элементы какой строки матрицы А на элементы какого столбца матрицы В нужно перемножить для получения элементов матрицы С , а линиями цвета элемента матрицы C соединены соответствующие элементы матриц A и B , произведения которых складываются для получения элемента матрицы C .

В результате получаем элементы произведения матриц:



Теперь у нас есть всё, чтобы записать произведение двух матриц:

.

Произведение двух матриц АВ имеет смысл только в том случае, когда число столбцов матрицы А совпадает с числом строк матрицы В .

Эту важную особенность будет легче запомнить, если почаще пользоваться следующими памятками:

Имеет место ещё одна важная особенность произведения матриц относительно числа строк и столбцов:

В произведении матриц АВ число строк равно числу строк матрицы А , а число столбцов равно числу столбцов матрицы В .

Пример 2. Найти число строк и столбцов матрицы C , которая является произведением двух матриц A и B следующих размерностей:

а) 2 Х 10 и 10 Х 5;

б) 10 Х 2 и 2 Х 5;

Пример 3. Найти произведение матриц A и B , если:

.

A B - 2. Следовательно, размерность матрицы C = AB - 2 X 2.

Вычисляем элементы матрицы C = AB .

Найденное произведение матриц: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Пример 5. Найти произведение матриц A и B , если:

.

Решение. Число строк в матрице A - 2, число столбцов в матрице B C = AB - 2 X 1.

Вычисляем элементы матрицы C = AB .

Произведение матриц запишется в виде матрицы-столбца: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Пример 6. Найти произведение матриц A и B , если:

.

Решение. Число строк в матрице A - 3, число столбцов в матрице B - 3. Следовательно, размерность матрицы C = AB - 3 X 3.

Вычисляем элементы матрицы C = AB .

Найденное произведение матриц: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Пример 7. Найти произведение матриц A и B , если:

.

Решение. Число строк в матрице A - 1, число столбцов в матрице B - 1. Следовательно, размерность матрицы C = AB - 1 X 1.

Вычисляем элемент матрицы C = AB .

Произведение матриц является матрицей из одного элемента: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Программная реализация произведения двух матриц на С++ разобрана в соответствующей статье в блоке "Компьютеры и программирование".

Возведение матрицы в степень

Возведение матрицы в степень определяется как умножение матрицы на ту же самую матрицу. Так как произведение матриц существует только тогда, когда число столбцов первой матрицы совпадает с числом строк второй матрицы, то возводить в степень можно только квадратные матрицы. n -ая степень матрицы путём умножения матрицы на саму себя n раз:

Пример 8. Дана матрица . Найти A ² и A ³ .

Найти произведение матриц самостоятельно, а затем посмотреть решение

Пример 9. Дана матрица

Найти произведение данной матрицы и транспонированной матрицы , произведение транспонированной матрицы и данной матрицы.

Свойства произведения двух матриц

Свойство 1. Произведение любой матрицы А на единичную матрицу Е соответствующего порядка как справа, так и слева, совпадает с матрицей А, т.е. АЕ = ЕА = А.

Иными словами, роль единичной матрицы при умножении матриц такая же, как и единицы при умножении чисел.

Пример 10. Убедиться в справедливости свойства 1, найдя произведения матрицы

на единичную матрицу справа и слева.

Решение. Так как матрица А содержит три столбца, то требуется найти произведение АЕ , где

-
единичная матрица третьего порядка. Найдём элементы произведения С = АЕ :



Получается, что АЕ = А .

Теперь найдём произведение ЕА , где Е – единичная матрица второго порядка, так как матрица А содержит две строки. Найдём элементы произведения С = ЕА :

Замечание. Операция перемножения матриц некоммутативна, т.е. Действительно, если существует произведение АВ, то ВА может вообще не существовать из-за несовпадения размерностей (см. предыдущий пример). Если существуют и АВ, и ВА, то они могут иметь разные размерности (если).

Для квадратных матриц одного порядка произведения АВ и ВА существуют и имеют одинаковую размерность, но их соответствующие элементы в общем случае не равны.

Однако в некоторых случаях произведения АВ и ВА совпадают.

Рассмотрим произведение квадратной матрицы А на единичную матрицу Е того же порядка:

Тот же результат получим и для произведения ЕА. Итак, для любой квадратной матрицы А АЕ = ЕА =А.

Обратная матрица.

Определение 3.7. Квадратная матрица А называется вырожденной, если, и невырожденной, если.

Определение 3.8. Квадратная матрица В называется обратной к квадратной матрице А того же порядка, если АВ = ВА = Е. При этом В обозначается.

Рассмотрим условие существования матрицы, обратной к данной, и способ ее вычисления.

Теорема 3.2. Для существования обратной матрицы необходимо и достаточно, чтобы исходная матрица была невырожденной.

Доказательство.

1) Необходимость: так как то (теорема 3.1), поэтому

2) Достаточность: зададим матрицу в следующем виде:

Тогда любой элемент произведения (или), не лежащий на главной диагонали, равен сумме произведений элементов одной строки (или столбца) матрицы А на алгебраические дополнения к элементам друго столбца и, следовательно, равен 0 (как определитель с двумя равными столбцами). Элементы, стоящие на главной диагонали, равны Таким образом,

*=. Теорема доказана.

Замечание. Сформулируем еще раз способ вычисления обратной матрицы: ее элементами являются алгебраические дополнения к элементам транспонированной матрицы А, деленные на ее определитель.

  • 5. Теорема об умножении некоторой строки матрицы определителя на одно и то же число. Определитель с двумя пропорциональными строками.
  • 6. Теорема о разложении определителя на сумму определителей и следствия из нее.
  • 7. Теорема о разложении определителя по элементам строки(столбца) и следствия из неё.
  • 8. Операции над матрицами и их свойства. Доказать одно из них.
  • 9.Операция транспонирования матрицы и её свойства.
  • 10. Определение обратной матрицы. Доказать что у каждой обратимой матрицы существует лишь одно обращение.
  • 13. Блочные матрицы. Сложение и умножение блочных матриц. Теорема об определителе квазитреугольной матрицы.
  • 14. Теорема об определителе произведения матриц.
  • 15. Теорема о существовании обратной матрицы.
  • 16.Определение ранга матрицы. Теорема о базисном миноре и следствие из неё.
  • 17. Понятие о линейной зависимости строк и столбцов матрицы. Теорема о ранге матрицы.
  • 18. Методы вычисления ранга матрицы: метод окаймляющих миноров, метод элементарных преобразований.
  • 19. Применение элементарных преобразований только строк(только столбцов) к отысканию обратной матрицы.
  • 20. Системы линейных уравнений. Критерий совместности и критерий определенности.
  • 21. Решение совместной системы линейных уравнений.
  • 22. Однородные системы линейных уравнений. Теорема о существовании фундаментальной системы решений.
  • 23. Линейные операции над векторами и их свойства. Доказать одно из них.
  • 24. Определение разности двух векторов. Доказать что для любых векторов иразностьсуществует и единственна.
  • 25. Определение базиса, координаты вектора в базисе. Теорема о разложении вектора по базису.
  • 26. Линейная зависимость векторов. Свойства понятия линейной зависимости, доказать одно из них.
  • 28. Декартовы системы координат в пространстве, на плоскости и на прямой. Теорема о линейной комбинации векторов и следствия из нее.
  • 29. Вывод формул выражающих координаты точки в одной дск через координаты этой же точки в другой дск.
  • 30. Скалярное произведение векторов. Определение и основные свойства.
  • 31. Векторное произведение векторов. Определение и основные свойства.
  • 32. Смешанное произведение векторов. Определение и основные свойства.
  • 33. Двойное векторное произведение векторов. Определение и формула для вычисления(без доказательства).
  • 34. Алгебраические линии и поверхности. Теоремы об инвариантности(неизменности) порядка.
  • 35. Общие уравнения плоскости и прямой.
  • 36. Параметрические уравнения прямой и плоскости.
  • 37. Переход от общих уравнений плоскости и прямой на плоскости к их параметрическим уравнениям. Геометрический смысл коэффициентов а,в,с (а,в) в общем уравнении плоскости(прямой на плоскости).
  • 38. Исключение параметра из параметрических уравнений на плоскости(в пространстве), канонические уравнения прямой.
  • 39. Векторные уравнения прямой и плоскости.
  • 40. Общие уравнения прямой в пространстве, приведение к каноническому виду.
  • 41. Расстояние от точки до плоскости. Расстояние от точки до прямой. Другие задачи о прямых и плоскостях.
  • 42. Определение эллипса. Каноническое уравнение эллипса. Параметрические уравнения эллипса. Эксцентриситет эллипса.
  • 44. Определение параболы. Вывод канонического уравнения параболы.
  • 45. Кривые второго порядка и их классификация. Основная теорема о квп.
  • 45. Поверхности второго порядка и их классификация. Основная теорема о пвп. Поверхности вращения.
  • 47.Определение линейного пространства. Примеры.
  • 49. Определение Евклидова пространства. Длина вектора. Угол между векторами. Неравенство Коши-Буняковского. Пример.
  • 50. Определение евклидова пространства. Теорема Пифагора. Неравенство треугольникаю Пример.
  • 14. Теорема об определителе произведения матриц.

    Теорема:

    Доказательство: Пусть заданы квадратные матрицы порядка n.
    и
    . На основании теоремы об определителе квазитреугольной матрицы (
    ) имеем:
    порядок данной матрицы 2n. Не изменяя определителя, над матрицей порядка 2n выполним последовательно следующие преобразования: к первой строке прибавим . В результате такого преобразования на первыхn позициях первой строки будут все 0, а на вторых(во втором блоке) – будет стоять сумма произведений первой строки матрицы А на первый столбец матрицы В. Проделав те же самые преобразования с 2 … n строками получим следующее равенство:

    Чтобы привести правый определитель к квазитреугольному виду поменяем в нем местами 1 и 1+ n столбцы, 2 и 2+ n … n и 2 n столбцы. В результате получим равенство:

    Замечание: Ясно что теорема справедлива для любого конечного числа матриц. В частности
    .

    15. Теорема о существовании обратной матрицы.

    Определение: Если
    матрица называется не невырожденной (неособенной). Если
    то матрица называется вырожденной (особенной).

    Рассмотрим произвольную квадратную матрицу А. Из алгебраических дополнений элементов этой матрицы составим матрицу и транспонируем её. Получим матрицу С:
    матрица С называется присоединенной по отношению к матрице А. Вычислив произведение А*С и В*С получим
    Следовательно
    , таким образом
    если
    .

    Таким образом из неособенности матрицы А следует существование А -1 . С другой стороны если А имеет А -1 то матричное уравнение АХ=Е разрешимо. Следовательно
    и. Объединяя полученные результаты получим утверждение:

    Теорема: У квадратной матрицы над полем Р существует обратная тогда и только тогда когда она не особенная. Если обратная матрица существует то она находится по формуле:
    , где С присоединенная матрица.

    Замечание:



    16.Определение ранга матрицы. Теорема о базисном миноре и следствие из неё.

    Определение: Миноромk-того порядка матрицы А называется определительk-того порядка с элементами, лежащими на пересечении любыхkстрок и любыхkстолбцов.

    Определение: Рангом матрицы А называется наивысший порядок отличный от 0 миноров этой матрицы. Обозначаетсяr(A). Ясно 0<=r(A)<=min(m,n). Таким образом еслиr(A)=rто среди миноров матрицы А есть минорr-го порядка отличны от 0, а все минорыr+1 порядка и выше равны 0.

    Определение: Всякий отличный от 0 минор матрицы порядок которого равен рангу матрицы называется базисным минором этой матрицы. Ясно что матрица может иметь несколько базовых миноров. Столбцы и строки которые образуют базовые миноры называются базисными.

    Теорема: В производной матрице А=(а i) m , n каждый столбец является линейной комбинацией базисных столбцов в которых расположен базисный минор(то же самое о строках).

    Доказательство: Пусть r(A)=r. Выберем из матрицы один базисный минор. Для простоты предположим, что базовый минор расположен в левом верхнем углу матрицы, т.е. на первых r строках и первых r столбцах. Тогда базовый минор Mr будет иметь вид:
    . Нам нужно доказать что всякий столбец матрицы А является линейной комбинацией первыхr столбцов этой матрицы, в которых расположен базисный минор, т.е. надо доказать что существуют числа λ j такие, что для любого k-того столбца матрицы А имеет место равенство: где

    .

    Припишем к базисному минору какие-нибудь k-тый столбец и s-тую строку:
    т.к. если добавленная строка или

    столбец входят в число базисных то определитель
    , как определитель с двумя одинаковыми строками(столбцами). Если добавлена строка(столбец) то
    согласно определению ранга матрицы. Разложим определитель
    по элементам нижней строки, получим:отсюда получаем:
    где λ 1 … λ r не зависят от номера S, т.к. А Sj не зависят от элементов добавленной S-той строки. Равенство (1) и есть нужное нам равенство.(ч.т.д.)

    Следствие: Если А квадратная матрица, а определительA=0 ,то один из столбцов матрицы есть линейная комбинация оставшихся столбцов, а так же одна из строк является линейная комбинация оставшихся строк.

    Доказательство: Если определитель матрицыA=0, то ранг этой матрицы <=n-1,n-порядок матрицы. Поэтому, по крайней мере одна строка или один столбец не входят в число базисных. Эта строка (столбец) линейно выраженная через строки (столбцы) в которой расположен базисный минор, а значит линейно выраженная через остальные строки (столбцы).

    Для того чтобы [A] =0 необходимо и достаточно чтобы по крайней мере одна строка (столбец) являлись линейной комбинацией остальных её строк (столбцов).

    .
    Лекция 6
    4.6 Определитель произведения двух квадратных матриц.

    Произведение двух квадратных матриц n -го порядка всегда определено. При этом важное значение имеет следующая теорема.

    Теорема. Определитель матрицы-произведения равен произведению определителей матриц сомножителей:

    Доказательство. Пусть

    и
    ,

    .

    Составим вспомогательный определитель

    .

    По следствию теоремы Лапласа имеем:

    .

    Итак,
    , покажем, что
    . Для этого преобразуем определитель следующим образом. Сначала первые п
    , прибавим к
    -му столбцу. Затем первые п столбцов, умноженных соответственно на
    , прибавим к
    -му столбцу и т.д. На последнем шаге к
    -му столбцу будут прибавлены первые п столбцов, умноженных соответственно на
    . В результате получим определитель

    .

    Разлагая полученный определитель с помощью теоремы Лапласа по последним п столбцам, находим:



    Итак, доказаны равенства и , из которых следует, что .
    4.7.Обратная матрица

    Определение 1 . Пусть дана квадратная матрица А п -го порядка. Квадратную матрицу
    того же порядка называют обратной к матрице А , если , где Е -единичная матрица п -го порядка.

    Утверждение. Если существует матрица, обратная к матрице А , то такая матрица единственная.

    Доказательство. Допустим, что матрица является не единственной матрицей, обратной к матрице А . Возьмем другую обратную матрицу В. Тогда выполняются условия

    Рассмотрим произведение
    . Для него имеют место равенства

    из которых вытекает, что
    . Тем самым единственность обратной матрицы доказана.

    При доказательстве теоремы о существовании обратной матрицы нам потребуется понятие «присоединенная матрица».

    Определение 2 . Пусть дана матрица

    элементами которой являются алгебраические дополнения элементов матрицы А , называется присоединенной матрицей к матрице А .

    Обратим внимание на то, что для построения присоединенной матрицы С элементы матрицы А нужно заменить их алгебраическими дополнениями, а затем полученную матрицу транспонировать.

    Определение 3. Квадратная матрица А называется невырожденной , если
    .

    Теорема. Для того чтобы матрица А имела обратную матрицу , необходимо и достаточно, чтобы матрица А была невырожденной. При этом матрица определяется формулой

    , (1)

    где - алгебраические дополнения элементов матрицы А .

    Доказательство. Пусть матрица А имеет обратную матрицу . Тогда выполняются условия , из которых следует . Из последнего равенства получаем, что определители и
    . Эти определители связаны соотношением
    . Матрицы А и невырожденные, поскольку их определители отличны от нуля.

    Пусть теперь матрица А невырожденная. Докажем, что матрица А имеет обратную матрицу и она определяется формулой (1). Дя этого рассмотрим произведение

    матрицы А С .

    По правилу умножения матриц элемент произведения
    матриц А и С имеет вид: . Так как сумма произведений элементов i -й строки на алгебраические дополнения соответствующих элементов j - й строки равна нулю при
    и определителю при
    . Следовательно,

    где Е – единичная матрица п -го порядка. Аналогично доказывается равенство
    . Таким образом,
    , а это означает, что
    и матрица
    является обратной к матрице А . Следовательно, невырожденная матрица А имеет обратную матрицу, которая определяется формулой (1).

    Следствие 1 . Определители матриц А и связаны соотношением .

    Следствие 2 . Основное свойство присоединенной матрицы С к матрице А выражается

    равенствами
    .

    Следствие 3 . Определитель невырожденной матрицы А и присоединенной к ней матрицы

    С связаны равенством
    .

    Следствие 3 вытекает из равенства
    и свойства определителей, согласно которому при умножении на п- ю степень этого числа. В данном случае

    откуда следует, что .

    Пример. Найти матрицу, обратную к матрице А :

    .

    Решение. Определитель матрицы

    отличен от нуля. Поэтому матрица А имеет обратную. Чтобы ее найти, сначала вычислим алгебраические дополнения:

    ,
    ,
    ,

    ,
    ,
    ,


    ,
    .

    Теперь по формуле (1) запишем обратную матрицу

    .
    4.8. Элементарные преобразования над матрицами. Алгоритм Гаусса.

    Определение 1. Под элементарными преобразованиями над матрицей размера

    понимают следующие действия.


    1. Умножение любой строки (столбца) матрицы на любое ненулевое число.

    2. Прибавление к любой i -й строке матрицы любой ее j - й строки, умноженной на произвольное число.

    3. Прибавление к любому i -му столбцу матрицы любого ее j - го столбца, умноженного на произвольное число.

    4. Перестановка строк (столбцов) матрицы.
    Определение 2. Матрицы А и В будем называть эквивалентными , если одна из них может быть преобразована в другую с помощью элементарных преобразований. Будем писать
    .

    Эквивалентность матриц обладает следующими свойствами :


    Определение 3 . Ступенчатой называется матрица А обладающая следующими свойствами:

    1) если i -я строка нулевая, т.е. состоит из одних нулей, то
    -я строка также нулевая;

    2) если первые ненулевые элементы i -й и -й строк располагаются в столбцах с номерами k и l , то
    .

    Пример. Матрицы

    и

    являются ступенчатыми, а матрица

    ступенчатой не является.

    Покажем, как с помощью элементарных преобразований можно привести матрицу А к ступенчатому виду.

    Алгоритм Гаусса . Рассмотрим матрицу А размера . Без ограничения общности можем считать, что
    . (Если в матрице А имеется хотя бы отличный от нуля элемент, то перестановкой между собой строк, а затем столбцов можно добиться, чтобы этот элемент попал на пересечение первой строки и первого столбца.) Прибавим ко второй строке матрицы А первую, умноженную на
    , к третьей строке – первую, умноженную на
    и т.д.

    В результате получим, что

    .

    Элементы в последних
    строках определяются формулами:

    ,
    ,
    .

    Рассмотрим матрицу

    .

    Если все элементы матрицы равны нулю, то

    и эквивалентная матрица ступенчатая. Если среди элементов матрицы хотя бы один отличен от нуля, то можно без ограничения общности можно считать, что
    (этого можно добиться перестановкой строк и столбцов матрицы ). Преобразуя в этом случае матрицу так же как матрицу А , получим

    соответственно,

    .

    Здесь
    ,
    ,
    .

    причем , , … ,
    . В матрице А т строк и чтобы привести ее к А r , отличный от нуля, а все миноры порядка выше r равны нулю. Ранг матрицы будем обозначать символом
    .

    Вычисляется ранг матрицы методом окаймления миноров .


    Пример. Методом окаймляющих миноров вычислить ранг матрицы

    .

    Решение.


    Указанный выше способ не всегда бывает удобным, т.к. связан с вычислением большого

    количества определителей.

    Утверждение. Ранг матрицы не изменяется при элементарных преобразованиях ее строк и столбцов.

    Сформулированное утверждение указывает второй способ вычисления ранга матрицы. Он называется методом элементарных преобразований . Для отыскания ранга матрицы нужно методом Гаусса привести ее к ступенчатому виду, а затем выделить максимальный ненулевой минор. Поясним это на примере.

    Пример. С помощью элементарных преобразований вычислить ранг матрицы

    .

    Решение. Выполним в соответствии с методом Гаусса цепочку элементарных преобразований. В результате получим цепочку эквивалентных матриц: