Диск имеет момент инерции относительно оси. Момент инерции для чайников: определение, формулы, примеры решения задач

English: Wikipedia is making the site more secure. You are using an old web browser that will not be able to connect to Wikipedia in the future. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器,这在将来无法连接维基百科。请更新您的设备或联络您的IT管理员。以下提供更长,更具技术性的更新(仅英语)。

Español: Wikipedia está haciendo el sitio más seguro. Usted está utilizando un navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacte a su administrador informático. Más abajo hay una actualización más larga y más técnica en inglés.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipédia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, qui ne pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: ウィキペディアではサイトのセキュリティを高めています。ご利用のブラウザはバージョンが古く、今後、ウィキペディアに接続できなくなる可能性があります。デバイスを更新するか、IT管理者にご相談ください。技術面の詳しい更新情報は以下に英語で提供しています。

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft nicht mehr auf Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerät oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Per favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipédia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Használj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alább olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia i framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

We are removing support for insecure TLS protocol versions, specifically TLSv1.0 and TLSv1.1, which your browser software relies on to connect to our sites. This is usually caused by outdated browsers, or older Android smartphones. Or it could be interference from corporate or personal "Web Security" software, which actually downgrades connection security.

You must upgrade your web browser or otherwise fix this issue to access our sites. This message will remain until Jan 1, 2020. After that date, your browser will not be able to establish a connection to our servers.

В статье узнаете что такое момент инерции, как влияет ось вращения, а также момент вращения для материальной точки, множества частиц и для твердых тел.

Момент инерции , обозначенный буквой I , является физической величиной, характерной для вращательного движения тела. Это значение предполагает постоянное значение для данного тела и конкретной оси его вращения. Величина момента инерции зависит от веса тела, положения оси вращения, вокруг которой вращается тело и распределения его массы. Поэтому можно написать, что момент инерции тела информирует нас о том, как масса вращающегося тела распределяется вокруг фиксированной оси его вращения. Чем выше значение момента инерции, тем сложнее установить или изменить вращательное движение данного тела (например, уменьшить или увеличить его угловую скорость).

Момент инерции тела относительно оси вращения

На следующем рисунке показано, как выбор оси вращения тела влияет на значение момента его инерции и, следовательно, на легкость/сложность его вращения. На рисунках а) и б) показан однородный цилиндр с радиусом r и высотой h, который вращается вокруг продольной оси (рисунок а) и вокруг оси, перпендикулярной цилиндру, проходящему через его центр (рисунок б).

Ролик с радиусом r и высотой h вращается вокруг продольной оси (рисунок а) и оси, перпендикулярной цилиндру, проходящему через его центр (рисунок б)). Вес ролика в случае а) гораздо более сфокусирован вблизи его оси вращения, чем в случае б), поэтому цилиндр с рисунка а) вращать легче, чем ролик с рисунка б).

В обоих случаях мы имеем дело с одним и тем же телом, но в первом случае (рис. А) легче вращать ролик. Причиной такой ситуации является различное распределение веса цилиндра вокруг его оси вращения: при вращении цилиндра вокруг продольной оси масса ролика более сфокусирована вблизи оси вращения, чем во второй. В результате получается меньшее значение момента инерции цилиндра из рисунка а), а не цилиндра из рисунка б).

Момент инерции материальной точки

Чтобы вычислить момент инерции и вращение отдельной частицы вокруг заданной оси вращения, используем следующее выражение:

где m — масса частицы, r — расстояние частицы от оси вращения.

Момента инерции измеряется в кг ⋅ м 2 в системе СИ.

Момент инерции сложного тела с частицами

Момент инерции тела, состоящего из n частиц, равен сумме моментов инерции каждой частицы относительно данной оси вращения.

Например, для тела, состоящего из четырех частиц, имеем:

где m 1 , m 2 , m 3 и m 4 — массы частиц, которые составляют тела, r 1 , r 2 , r 3 и r 4, расстояние от оси вращения соответственно частиц с массами m 1 , m 2 , m 3 и m 4 .

Момент инерции твердого тела

Когда тело состоит из очень многих частиц, расположенных близко друг к другу, сумма моментов инерции в приведенном выше уравнении заменяется интегралом. Если расширенное тело разделено на бесконечно малые элементы с массой dm, удаленной от оси вращения на величину r, момент инерции I будет равен:

На следующем рисунке показаны выбранные расширенные тела с их моментами инерции, рассчитанными для осей вращения, указанных на чертежах.

Момент инерции обода

Момент инерции обода будет равен I=mr 2

Чтобы изменить скорость перемещения тела в пространстве, необходимо приложить некоторое усилие. Этот факт относится ко всем видам механического движения и связан с наличием инерционных свойств у объектов, имеющих массу. В данной статье рассматривается вращение тел и дается понятие об их моменте инерции.

Что такое вращение с точки зрения физики?

Ответ на этот вопрос может дать каждый человек, поскольку этот физический процесс ничем не отличается от его понятия в обиходе. Процесс вращения представляет собой перемещение объекта, обладающего конечной массой, по круговой траектории вокруг некоторой воображаемой оси. Можно привести следующие примеры вращения:

  • Движение колеса автомобиля или велосипеда.
  • Вращение лопастей вертолета или вентилятора.
  • Движение нашей планеты вокруг оси и вокруг Солнца.

Какие физические величины характеризуют процесс вращения?

Перемещение по окружности описывается набором величин в физике, основные из которых перечислены ниже:

  • r - расстояние до оси материальной точки массой m.
  • ω и α - угловая скорость и ускорение, соответственно. Первая величина показывает, на сколько радиан (градусов) поворачивается тело вокруг оси за одну секунду, вторая величина описывает скорость изменения во времени первой.
  • L - момент импульса, который подобен аналогичной характеристике при линейном движении.
  • I - момент инерции тела. Эта величина рассматривается ниже в статье подробно.
  • M - момент силы. Он характеризует степень изменения величины L, если приложена внешняя сила.

Перечисленные величины связаны друг с другом следующими формулами вращательного движения:

Первая формула описывает круговое движение тела в отсутствие действия внешних моментов сил. В приведенном виде она отражает закон сохранения момента импульса L. Второе выражение описывает случай ускорения или замедления вращения тела в результате действия момента силы M. Оба выражения часто используются при решении задач динамики по круговой траектории.

Как видно из этих формул, момент инерции относительно оси (I) в них используется в качестве некоторого коэффициента. Рассмотрим подробнее эту величину.

Откуда появляется величина I?

В этом пункте рассмотрим самый простой пример вращения: круговое перемещение материальной точки массой m, дистанция которой от оси вращения составляет r. Эта ситуация приведена на рисунке.

Согласно определению, момент импульса L записывается, как произведение плеча r на линейный импульс p точки:

L = r*p = r*m*v, поскольку p = m*v

Учитывая, что линейная и угловая скорость связаны друг с другом через расстояние r, это равенство можно переписать так:

v = ω*r => L = m*r 2 *ω

Произведение массы материальной точки на квадрат расстояния до оси вращения принято называть моментом инерции. Формула выше перепишется в таком случае следующим образом:

То есть мы получили выражение, которое было приведено в предыдущем пункте, и ввели в использование величину I.

Общая формула для величины I тела

Выражение для момента инерции массой m материальной точки является базовым, то есть оно позволяет рассчитать эту величину для любого тела, имеющего произвольную форму и неоднородное распределение массы в нем. Для этого необходимо разбить рассматриваемый объект на маленькие элементы массой m i (целое число i - номер элемента), затем, умножить каждый из них на квадрат расстояния r i 2 до оси, вокруг которой рассматривают вращение, и сложить полученные результаты. Описанную методику нахождения величины I можно записать математически так:

I = ∑ i (m i *r i 2)

Если тело разбито таким образом, что i->∞, тогда приведенная сумма заменяется интегралом по массе тела m:

Этот интеграл эквивалентен другому интегралу по объему тела V, поскольку dV=ρ*dm:

I = ρ*∫ V (r i 2 *dV)

Все три формулы используются для вычисления момента инерции тела. При этом в случае дискретного распределения масс в системе предпочтительнее пользоваться 1-м выражением. При непрерывном распределении массы применяют 3-е выражение.

Свойства величины I и ее физический смысл

Описанная процедура получения общего выражения для I позволяет сделать некоторые выводы о свойствах этой физической величины:

  • она является аддитивной, то есть полный момент инерции системы можно представить, как сумму моментов отдельных ее частей;
  • она зависит от распределения массы внутри системы, а также от расстояния до оси вращения, чем больше последнее, тем больше I;
  • она не зависит от действующих на систему моментов сил M и от скорости вращения ω.

Физический смысл I заключается в том, насколько сильно система препятствует любому изменению скорости ее вращения, то есть момент инерции характеризует степень "плавности" возникающих ускорений. Например, колесо велосипеда можно легко раскрутить до больших угловых скоростей и также легко его остановить, но чтобы изменить вращение маховика на коленвале автомобиля, понадобится приложить значительное усилие и некоторое время. В первом случае имеет место система с маленьким моментом инерции, во втором - с большим.

Значение I некоторых тел для оси вращения, проходящей через центр масс

Если применить интегрирование по объему для любых тел с произвольным распределением массы, то можно получить для них величину I. В случае однородных объектов, которые имеют идеальную геометрическую форму, эта задача уже решена. Ниже приводятся формулы момента инерции для стержня, диска и шара массой m, в которых составляющее их вещество распределено равномерно:

  • Стержень. Ось вращения проходит перпендикулярно ему. I = m*L 2 /12, где L - длина стержня.
  • Диск произвольной толщины. Момент инерции с осью вращения, проходящей перпендикулярно его плоскости через центр масс, вычисляется так: I = m*R 2 /2, где R - радиус диска.
  • Шар. В виду высокой симметрии этой фигуры, для любого положения оси, проходящей через ее центр, I = 2/5*m*R 2 , здесь R - шара радиус.

Задача на расчет значения I для системы с дискретным распределением массы

Представим себе стержень длиною 0,5 метра, который сделан из твердого и легкого материала. Этот стержень закреплен на оси таким образом, что она проходит перпендикулярно ему точно посередине. На этот стержень подвешены 3-и груза следующим образом: с одной стороны оси имеются два груза массами 2 кг и 3 кг, находящиеся на расстояниях 10 см и 20 см от его конца, соответственно; с другой стороны подвешен один груз массой 1,5 кг к концу стержня. Для этой системы необходимо рассчитать момент инерции I и определить, с какой скоростью ω стержень будет вращаться, если к одному из его концов приложить силу 50 Н в течение 10 секунд.

Поскольку массой стержня можно пренебречь, тогда необходимо рассчитать момент I для каждого груза и сложить полученные результаты, чтобы получить полный момент системы. Согласно условию задачи от оси груз массой 2 кг находится на расстоянии 0,15 м (0,25-0,1), груз 3 кг - 0,05 м (0,25-0,20), груз 1,5 кг - 0,25 м. Воспользовавшись формулой для момента I материальной точки, получаем:

I = I 1 +I 2 +I 3 = m 1 *r 1 2 + m 2 *r 2 2 + m 3 *r 3 2 = 2*(0,15) 2 +3*(0,05) 2 +1,5*(0,25) 2 = 0,14 625 кг*м 2 .

Обратим внимание, что при выполнении вычислений все единицы измерения были переведены в систему СИ.

Чтобы определить угловую скорость вращения стержня после действия силы, следует применить формулу с моментом силы, которая была приведена во втором пункте статьи:

Поскольку α = Δω/Δt и M = r*F, где r - длина плеча, получаем:

r*F = I*Δω/Δt => Δω = r*F*Δt/I

Учитывая, что r = 0,25 м, подставляем числа в формулу, получаем:

Δω = r*F*Δt/I = 0,25*50*10/0,14625 = 854,7 рад/с

Полученная величина является достаточно большой. Чтобы получить привычную частоту вращения, следует поделить Δω на 2*pi радиан:

f = Δω/(2*pi) = 854,7/(2*3,1416) = 136 с -1

Таким образом, приложенная сила F к концу стержня с грузами за 10 секунд раскрутит его до частоты 136 оборотов в секунду.

Расчет значения I для стержня, когда ось проходит через его конец

Пусть имеется однородный стержень массой m и длиной L. Необходимо определить момент инерции, если ось вращения расположена на конце стержня перпендикулярно ему.

Воспользуемся общим выражением для I:

I = ρ*∫ V (r i 2 *dV)

Разбивая рассматриваемый объект на элементарные объемы, заметим, что dV может быть записано, как dr*S, где S - площадь сечения стержня, а dr - толщина элемента разбиения. Подставляя это выражение в формулу, имеем:

I = ρ*S*∫ L (r 2 *dr)

Этот интеграл вычислить достаточно просто, получаем:

I = ρ*S* (r 3 /3)∣ 0 L => I = ρ*S*L 3 /3

Поскольку объем стержня равен S*L, а масса - ρ*S*L, то получаем конечную формулу:

Любопытно отметить, что момент инерции для того же стержня, когда ось проходит через его центр масс, в 4 раза меньше полученной величины (m*L 2 /3/(m*L 2 /12)=4).

Момент инерции - скалярная (в общем случае - тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².

Обозначение: I или J .

2. Физический смысл момента инерции. Произведение момента инерции тела на его угловое ускорение равно сумме моментов всех сил, приложенных к телу. Сравните. Вращательное движение. Поступательное движение. Момент инерции представляет собой меру инерции тела во вращательном движении

Например, момент инерции диска относительно оси О" в соответствии с теоремой Штейнера:

Теорема Штейнера: Момент инерции I относительно произвольной оси равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:

18. Момент импульса твердого тела. Вектор угловой скорости и вектор момента импульса. Гироскопический эффект. Угловая скорость прецессии

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим .

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса) : . Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:.

угловую скорость как вектор, величина которого численно равна угловой скорости, и направленный вдоль оси вращения, причем, если смотреть с конца этого вектора, то вращение направлено против часовой стрелки . Исторически сложилось 2 , что положительным направлением вращения считается вращение «против часовой стрелки», хотя, конечно, выбор этого направления абсолютно условен.  Для определения направления вектора угловой скорости можно также воспользоваться «правилом буравчика» (которое также называется «правилом правого винта») − если направление движения ручки буравчика (или штопора) совместить с направлением вращения, то направление движения всего буравчика совпадет с направлением вектора угловой скорости.

Вращающееся тело (колесо мотоцикла) стремиться сохранять положение оси вращения в пространстве неизменным.(гироскопический эффект) Поэтому возможно движение на 2-х колёсах, но не возможно стояние на двух колёсах Этот эфект используется в корабельных и танковых системах наведения орудий. (корабль качается на волнах, а орудие смотрит в одну точку) В навигации и др.

Наблюдать прецессию достаточно просто. Нужно запустить волчок и подождать, пока он начнёт замедляться. Первоначально ось вращения волчка вертикальна. Затем его верхняя точка постепенно опускается и движется по расходящейся спирали. Это и есть прецессия оси волчка.

Главное свойство прецессии - безынерционность: как только сила, вызывающая прецессию волчка, пропадёт, прецессия прекратится, а волчок займёт неподвижное положение в пространстве. В примере с волчком этого не произойдет, поскольку в нём вызывающая прецессию сила - гравитация Земли - действует постоянно.

19. Идеальная и вязкая жидкость. Гидростатика несжимаемой жидкости. Стационарное движение идеальной жидкости. Уравнение Бирнулли .

Идеальной жидкостью назвается воображаемая несжимаемая жидкость , в которой отсутствуют вязкость, внутреннее трение и теплопроводность . Так как в ней отсуствует внутреннее трение, то нет касательных напряжений между двумя соседними слоями жидкости.

вязкая жидкость характеризуется наличием сил трения, которые возникают при ее движении. вязкой наз. жидкость , в которой при движении кроме нормальных напряжений наблюдаются и касательные напряжения

Рассматриваемые в Г. ур-ния относит. равновесия несжимаемой жидкости в поле сил тяжести (относительно стенок сосуда, совершающего движение по нек-рому известному закону, напр. поступательное или вращательное) дают возможность решать задачи о форме свободной поверхности и о плескании жидкости в движущихся сосудах - в цистернах для перевозки жидкостей, топливных баках самолётов и ракет и т. п., а также в условиях частичной или полной невесомости на космич. летат. аппаратах. При определении формы свободной поверхности жидкости, заключённой в сосуде, кроме сил гидростатич. давления, сил инерции и силы тяжести необходимо учитывать поверхностное натяжение жидкости. В случае вращения сосуда вокруг вертик. оси с пост. угл. скоростью свободная поверхность принимает форму параболоида вращения, а в сосуде, движущемся параллельно горизонтальной плоскости поступательно и прямолинейно с пост. ускорением а , свободной поверхностью жидкости является плоскость, наклонённая к горизонтальной плоскости под углом

ОПРЕДЕЛЕНИЕ

Мерой инертности вращающегося тела является момент инерции (J) относительно оси, вокруг которой происходит вращение.

Это скалярная (в общем случае тензорная) физическая величина, которая равна произведению масс материальных точек () на которые следует провести разбиение рассматриваемого тела, на квадраты расстояний () от них до оси вращения:

где r - функция положения материальной точки в пространстве; - плотность тела; -объем элемента тела.

Для однородного тела выражение (2) можно представить как:

Момент инерции в международной системе единиц измеряется в:

Величина J входит в основные законы, при помощи которых описывают вращение твердого тела.

В общем случае величина момента инерции зависит от направления оси вращения, а так как в процессе движения вектор обычно изменяет свое направление относительно тела, то момент инерции следует рассматривать как функцию времени. Исключением является момент инерции тела, вращающегося вокруг неподвижной оси. В таком случае момент инерции остается постоянным.

Теорема Штейнера

Теорема Штейнера дает возможность вычислить момент инерции тела относительно произвольной оси вращения, когда является известным момент инерции рассматриваемого тела по отношению к оси, проходящей через центр масс этого тела и эти оси являются параллельными. В математическом виде теорема Штейнера представляется как:

где - момент инерции тела относительно оси вращения, проходящей через центр масс тела; m - масса, рассматриваемого тела; a- расстояние между осями. Обязательно следует помнить, что оси должны быть параллельны. Из выражения (4) следует, что:

Некоторые выражения для вычисления моментов инерции тела

При вращении вокруг оси материальная точка имеет момент инерции равный:

где m - масса точки; r - расстояние от точки до оси вращения.

Для однородного тонкого стержня массой m и длиной l J относительно оси, проходящей через его центр масс (ось перпендикулярна стержню), равен:

Тонкое кольцо, с массой вращающееся около оси, которая проходит через его центр, перпендикулярно плоскости кольца, то момент инерции вычисляется как:

где R - радиус кольца.

Круглый однородный диск, радиуса R и массы m имеет J относительно оси, проходящей через его центр и перпендикулярной плоскости диска, равный:

Для однородного шара

где m - масса шара; R - радиус шара. Шар вращается около оси, которая проходит через его центр.

Если осями вращения являются оси прямоугольной декартовой системы координат, то для непрерывного тела моменты инерции можно вычислить как:

где - координаты бесконечно малого элемента тела.

Примеры решения задач

ПРИМЕР 1

Задание Два шарика, которые можно считать точечными, скреплены тонким невесомым стержнем. Длина стержня l. Каков момент инерции данной системы, по отношению к оси, которая проходит перпендикулярно стержню через центр масс. Массы точек одинаковы и равны m.
Решение Найдем момент инерции одного шарика () относительно оси, находящейся от него на расстоянии :

Момент инерции второго шарика будет равен :

Суммарный момент инерции системы равен сумме:

Ответ

ПРИМЕР 2

Задание Каков момент инерции физического маятника относительно оси, которая проходит через точку O (рис.1)? Ось перепендикулярна плоскости рисунка. Считайте, что физический маятник состоит из тонкого стержня длины l, имеющего массу m и диска массы . Диск прикреплен к нижнему концу стержня и имеет радиус равный

Решение Момент инерции нашего маятника (J) будет равен сумме момента инерции стержня (), вращающегося относительно оси, проходящей через точку О и диска (), вращающегося вокруг той же оси: