Мощный стробоскоп своими руками. Разное Светодиодный стробоскоп своими руками для дискотеки

Наверняка многие хотели бы собрать стробоскоп, для небольшой домашней вечеринки и придать ей оригинального драйва.Обычно эти устройства изготавливают на импульсных лампах, но их теперь довольно трудно достать. Поэтому рассмотрим различные варианты конструкция, в том числе и на более доступных и современных светодиодах.


Удвоенное напряжение необходимое для поджига лампы 600 В подается между катодом и анодом. Удвоитель напряжения выполнен на диодах D2 и D1. Емкость С1 заряжается от сетевого напряжения, во время положительного полу-периода. Диод D2 находится в закрытом состоянии и не дает заряжаться емкости С2. В отрицательную полуволну Д1 заперт, а C2 накапливает заряд

Яркость вспышки лампы, зависит от количества энергии, накопленной в конденсаторах С2 и С1.

Когда мы наблюдаем вспышку, сопротивление между катодом и анодом низкое. Потому R1 и R2 ограничивают мощность передоваемую лампе, на случай запуска лампы в момент амплитудного значения сетевого напряжения.

Частота вспышек задается релаксационным генератором на динисторе D3. Он будет закрыт, пока напряжение на выходе не достигнет своего максимального значение, около 32 В. Емкость С4 начинает заряжаться через Р1 и сопротивление R7, пока закрыт симметрический динистор. Частоту колебаний генератора можно настраивать потенциометром Р1.

Симметричный динистор переключается, когда напряжение на обкладках конденсатора С4 начинает достигать необходимой величины, при этом динистор переключается в открытое состояние. Когда начнется новый заряд С4, стартует новый цикл.

После этого емкость С4 начинает периодически разряжаться через открытый симист. После замыкания симистора, разряд С3 начинает идти через первичную обмотку. Если симистор Q1 заперт, емкость С3 будет заряжаться до 310 В через первичную обмотку TR1 и сопротивление R5. Появление импульса в обмотке трансформатора вызвано мгновенным разрядом емкости С3. Поэтому на третий вывод импульсной лампы со вторичной обмотки следует напряжение около 6 кВ.

Инертный газ, находящийся в лампе, в тот момент становится проводящим, а емкости С2 и С1 разряжаются, а лампа дает вспышку. Поток света зависит от номинала конденсаторов С2 и С1 и мощности лампы.

Разводка печатной платы и размещение радиокомпонентов показаны на рисунке ниже.

Схема стробоскопа на светодиодах

Устройство выполнено на двух печатных платах, на одной из них расположены светодиоды, а на второй - блок управления. Основа конструкции микросхема-таймер LM555 генерирующая импульсную последовательность, от частоты которой зависят вспышки стробоскопа настраиваемые переменным сопротивлением. В роли блока питания подойдет любой самодельный или готовый источник от 6 до 12-ти вольт. Или одна батарейка типа «Крона».








Демонстрация работы готового устройства в видео ролике чуть-ниже:

Наверняка многие из нас хотели бы иметь дома стробоскоп, чтобы украсить небольшую вечеринку и придать ей немного драйва. Как правило их делают на импульсных лампах, но к сожалению они довольно дорогие и имеют маленький ресурс.

Я решил заменить лампы на светодиоды, и с уверенностью скажу, что такой стробоскоп своими руками для дискотеки сможет изготовить даже начинающий радиолюбитель.

Сам стробоскоп собирается на 2-х печатных платах, на одной из них расположены светодиоды, а на второй - блок управления. Главной деталью в блоке управления является микросхема-таймер LM555.

Именно она генерирует импульсы, частота которых определяет то, как быстро будет мерцать стробоскоп, и регулируется переменным резистором. Я использовал 60 светодиодов, но можно использовать любое количество кратное трем (3, 6, 9 …).

В качестве блока питания подойдет любой источник от 6-ти до 12-ти вольт. У меня он работает от одной батарейки «Крона», но при желании можно подключить его к блоку питания 12 Вольт (для этого предусмотрен дополнительный разъем). В этом случае стробоскоп светит намного ярче.

Вот список радиодеталей, которые понадобятся при изготовлении стробоскопа:

  • Сверхъяркие светодиоды (белые, 5 мм) - 60 шт;
  • Микросхема-таймер 555;
  • Полевик IRFZ44N;
  • Переменный резистор 1 мОм;
  • Резистор 5,6 Ом (2 Вт);
  • Резистор 56 Ом;
  • Резистор 10 кОм;
  • Резистор 100 кОм;
  • Конденсатор 1 мкФ x 50 В;
  • Конденсатор 1000 мкФ x 16 В;
  • Диод 1N4148;

Корпусные детали и прочая мелочевка:

  • Пластиковый корпус 90×60×25 мм;
  • Оргстекло 90×60 мм;
  • Текстолит;
  • Стойки М4×22 мм (мама-мама) - 4 шт;
  • Стойки М4×10 мм (мама-папа) - 4 шт;
  • Винты для стоек М3×8 мм;
  • Батарейка «Крона» + ответный разъем для нее;
  • Разъем питания (штыревой);
  • Переключатель движковый (2 положения);

Схема и печатная плата были нарисованы в программе Eagle . Управляющая плата получилась небольшой, при желании её можно сделать еще меньше, используя SMD компоненты. Размеры платы со светодиодами - 87 на 57 мм.

(PDF, 62 Кб);
(PDF, 13 Кб);
(PDF, 48 Кб);
(PDF, 10 Кб);
(PDF, 47 Кб).




К сожалению я не делал фотографии в процессе пайки, но надеюсь что это не будет вам помехой. Вот несколько фотографий, на которых видно уже запаянные платы для стробоскопа.



После изготовления печатных плат и напайки на них радиоэлементов можно приступать к корпусированию.




Внутри корпуса пришлось срезать несколько пластиковых стоек, которые мешали.

Чтобы защитить светодиоды я использовал оргстекло, установив его на стойки (между оргстеклом и корпусом стробоскопа - 10 мм).



Теперь остается только вставить все разъемы, закрутить болты и стробоскоп своими руками для дискотеки готов!




Вот видео работы стробоскопа:

Примечание: Если вы захотите сделать цветной стробоскоп, можете использовать RGB светодиоды (что довольно дорого), либо вырезать различные светофильтры из цветного оргстекла.

Итак, на рисунке вы можете видеть принципиальную электрическую схему концертного дискотечного стробоскопа. Удвоенное напряжение поможет нам получить достаточно высокое напряжение для поджига лампы, около 600 В. Прикладывается оно между катодом и анодом. Выполняют роль удвоителя напряжения у нас диоды D2 и D1. Конденсатор С1 заряжается до самого большого значения сетевого напряжения, пока у нас будет положительный период. При этом диод D2 находится в закрытом состоянии и запрещает подачу напряжения на конденсатор С2.

Далее на импульсную лампу L1 у нас подаётся достаточно высокое напряжение, около 600 В. На внешний электрод подаётся высокое напряжение, что вызывает свечение. Что касательно яркости вспышки лампы, то она зависит от того количества энергии, что накопилось в конденсаторах С2 и С1. Это является функцией напряжения U на выходе, и ёмкости С. В общем, внимание на формулу:

Е = 0,5 х С х U2.

Ограничение мощностью Рmах ограничивают возможности применения лампы. В таком случае мы определяем максимальную ёмкость Сmах конденсаторов С2 и С1 по следующей формуле:

Cmax =(1/3102)x(Pmax/Fmax)

Fmax - максимальная частота разряда через импульсную лампу

В тот момент, когда мы наблюдаем вспышку, значение сопротивления между катодом и анодом достаточно небольшое. Потому резисторы R1 и R2 ограничивают мощность, что передаётся лампе, если запуск лампы начинается в момент амплитудного значения сетевого напряжения. Подобная защита продлевает срок эксплуатации лампы и облегчает условия работы.

Частота вспышек лампы задаётся релаксационным генератором. Основа его - динистор . На самом деле динистор D3 будет закрытым до тех пор, пока напряжение на выходах не достигнут своего максимального значение, которое обычно равно 32 В. При этом в этот промежуток времени он начинает вести себя как выключатель. Конденсатор С4 начинает заряжаться через потенциометр Р1 и резистор R7 в то время, пока закрыт симметрический динистор. Частоту колебаний генератора и ток заряда конденсатора С4 может регулировать потенциометр Р1.

Симметричный динистор переключается тогда, когда напряжение на контактах С4 конденсатор начинает достигать достаточной величины напряжения, при этом динистор переходит в проводящее состояние. После того, как произошёл новый заряд конденсатора С4, мы увидим следующий цикл.

Итак, после этого конденсатор С4 начинает периодически разряжаться по цепи электрода симистора, который становится проводящим. После того, как произошло замыкание симистора, разряд конденсатора С3 начинает протекать через первичную обмотку. В том случае, если симистор Q1 закрыт, конденсатор С3 будет заряжаться примерно до 310 В через первичную обмотку TR1 и резистор R5. Появление импульса в обмотке TR1 вызвано мгновенным разрядом конденсатора С3. На пусковой электрод импульсной лампы с учётом трансформации подаётся достаточно большое напряжение (около 6 кВ).

Газ, что содержится в лампе, в тот момент становится проводящим, а конденсаторы С2 и С1 разряжаются, а лампа начинает давать вспышку. Поток света при этом равен ёмкости конденсаторов С2 и С1, а также мощности лампы.

Необходимо проявить осторожность во время проведения испытаний, так как схема связана с сетевым напряжением. Также стоит отметить, что на плате происходит генерация ещё более высоких напряжений. Обязательно, перед включением питания, проверьте, правильно ли расположены полярные радиоэлементы, в том числе два диода D1 и D2.

Если мы обратим внимание на импульсный трансформатор ТR1, то именно по нему определяется ёмкость конденсатора С3. Нужно учитывать, что первичная обмотка типа TS8 может выдержать нагрузку вплоть до 4 Дж. Также вполне может подойти конденсатор на 400 В. При этом не стоит увеличивать значение ёмкости, т.к. этим можно повредить обмотку.

Будьте крайне осторожны, работая с импульсной лампой. Не рекомендуется касаться лампы руками. Подключать лампы нужно ближе к плате, дабы уменьшить потери. Выводы лампы лучше не сгибать. В крайнем случае сгибать следует аккуратно, при помощи плоскогубцев.

Разводка печатной платы, а также размещение радиодеталей.

Отражатель позволит направить максимум света на площадку дискотеки. Изготовить его можно из алюминиевой полоски либо картона. Во втором способе следует прикрепить лист фольги. Установить стробоскоп можно также в ненужной автомобильной фаре.

Несколько важных практических советов для успешной работы со стробоскопом:

1. Не стоит использовать стробоскоп долго. В таком случае вы существенно продлите срок жизни импульсной лампы.

2. У некоторых людей стробоскоп можно вызвать беспокойство и волнение. Будьте осторожны, и примите в отношении таких людей меры.

3. Не освещайте рядом стоящих людей вспышкой, а также не смотрите непосредственно на лампу.

5. Наденьте солнцезащитные очки, если желаете принять меры предосторожности.

6. Резисторы обязательно должны быть на 5 и более ватт.

Предлагаем вам схему мощного студийного стробоскопа, идеально подходящего для проведения дискотек, а так же для применения на всякого рода концертных площадках. Энергия вспышки лежит в пределах ста джоулей, это обеспечивает очень длительную эксплуатацию импульсной лампы ИФК-2000.

Для увеличения картинок - кликните на изображении левой кнопкой мышки.

Схема не сложная, но, тем не менее, есть некоторые нюансы, которыми не стоит пренебрегать при сборке данного устройства. Одним из таких важных нюансов является выбор высоковольтных конденсаторов (С4 и С5 по схеме). Эти емкости должны быть рассчитаны именно для работы в импульсных устройствах. Обычные конденсаторы в данную схему ставить бесполезно, обычно после нескольких сотен вспышек у них отгорают внутренние контакты. Из отечественных рекомендуется ставить импульсные К50-17 на напряжение не менее 400 вольт с током утечки не более 3 мА, они изначально разрабатывались для работы с импульсными лампами. Можно поэкспериментировать с К50-3Ф. Что касается импортных импульсных конденсаторов, в магазинах в наличии их можно встретить редко, обычно их возят на заказ.

Перед установкой конденсаторов С4 и С5, их следует обтянуть термоусадкой.
R2 и R3 - два “монстрообразных” зеленых резистора мощностью 100 ватт каждый, их номинал может лежать в пределах 150…200 Ом. Резисторы соединены параллельно, общее сопротивление получается порядка 75…100 Ом.

На маломощном трансформаторе и микросхеме 7812 собран блок питания. Он нужен лишь для того, чтобы запитать 12-вольтовый компьютерный вентилятор, который в дальнейшем при работе устройства будет охлаждать мощные резисторы.

В генераторе, поджигающем импульсную лампу, применен трансформатор строчной развертки ТВС-110П3, такие раньше стояли в черно-белых телевизорах, они обеспечивают уровень высокого напряжения на уровне 16…18 киловольт. Динистор КН102 можно поставить с буквенными индексами Е, Ж, И.

Для изготовления рефлектора подойдет тонкая нержавейка. На контакты ИФК-2000 одеваются втулки, изготовленные из фторопласта.

Как вы уже поняли, блок питания устройства и блок генератора с импульсной лампой монтируются в разных корпусах. Соединение между блоками осуществляется посредством провода, рассчитанного на высокое напряжение. В данном варианте использован провод с силиконовой изоляцией, его длина 15 метров. Этой длины, как правило, хватает для того, чтобы установить излучатель в верхней части сцены под потолком и направить его на танцплощадку.

Особых настроек никаких не требуется, для блока питания главное, чтобы он выдавал 620…630 вольт на выходе удвоителя сетевого напряжения, образованного диодами VD1, VD2 и двумя импульсными конденсаторами С4, С5 (контрольные точки обозначены на принципиальной схеме). Если R2 и R3 при включении начинают сильно калиться, проверяйте утечку С4 и С5, скорее всего они тоже будут горячие, а это может привести к взрыву конденсаторов. Еще раз напомним, ток утечки емкостей не должен превышать 3 мА.

Наличие исправных трансформатора ТВС-110, динистора и емкостей С10, С11 обеспечит стабильную работу генератора, здесь тоже ничего настраивать не нужно.

При установке импульсной лампы соблюдайте аккуратность, не хватайтесь пальцами за рабочую колбу, если на ней останутся отпечатки пальцев или жировые пятна, стекло в этой области покроется мелкими трещинами, и лампа выйдет из строя, ведь “пыхи” у нее достаточно мощные. Если заметили какие-либо загрязнения, промойте колбу лампы чистым спиртом. И еще один нюанс, не устанавливайте светофильтр перед лампой, зачастую он не выдерживает, деформируется или разрушается, лучше лампу закрыть крупной сеткой.

При изготовлении блоков обязательно соблюдайте правила электробезопасности, потому, что силовые цепи устройства не имеют гальванической развязки с сетевым напряжением, 630 вольт после удвоителя – это очень большое напряжение, и хотя устройство имеет импульсный характер, ток в цепи может достигать нескольких сот ампер.

И последний нюанс, в связи с тем, что лицевые и задние панели блоков изготовлены из металла, их необходимо электрически соединить с клеммой РЕ сетевой вилки, так же как и конденсаторы С2, С3.

Молодежь любит отдыхать на лоне природы с музыкой и танцами, а какие сейчас современные танцы без стробоскопа?! Для проведения импровизированной мини дискотеки на природе и был создан этот небольшой стробоскоп на светодиодах с автономным питанием.

Из множества схем, выложенных в интернете, была выбрана простенькая, без всяких наворотов. После сборки на макете заработала сразу без каких либо проблем. Схема стробоскопа основана на таймере LM555N. Она генерирует прямоугольные импульсы, скважность (ширина) которых регулируется переменным резистором.

Эта схема интересно еще и тем, что в ней можно использовать большое количество светодиодов (число светодиодов должно быть кратное 3-м: к примеру это может быть 3, 6, 9, 12, 15... и т.д.), данном случае включено 60 шт.

Экран из органического стекла (плексигласа) сделан для защиты светодиодов от механических воздействий, при желании его можно сделать цветным.
В конструкции стробоскопа предусмотрено подключение внешнего источника питания 6-12 вольт. В помещении используется 12-ти вольтовый источник питания, в этом случае светодиоды светятся ярче.