Осевой момент инерции прямоугольника. Момент инерции и момент сопротивления

Моменты инерции сечения балки (бруса, стержня) относятся, как и площадь сечения, к одним из основных геометрических характеристик элемента, участвующих в расчетах на прочность. Напомню, что балкой в сопромате называется элемент, у которого один из размеров — длина...

Существенно больше двух других – ширины и высоты. Именно два последних габаритных размера плюс форма и влияют наряду со свойствами материала на прочностные характеристики балки.

Геометрические моменты инерции сечения нельзя путать с моментами инерции тел, хотя их смысл весьма схож. Момент инерции тела вокруг некоторой оси – это сумма произведений масс элементарных «объемных» точек тела на квадраты расстояний от оси до этих точек. Момент инерции сечения (плоской фигуры) — это сумма произведений площадей элементарных «плоских» точек этого сечения на квадраты расстояний от них до рассматриваемой оси.

Формулы для вычисления осевых моментов инерции, а также радиусов инерции и моментов сопротивления почти тридцати элементарных фигур, из которых можно составить любое сечение бруса, можно взять в разделе «Элементы сопротивления материалов» главы №1 «Общетехнические сведения» тома №1 «Справочника конструктора-машиностроителя» В.И. Анурьева. Этот трехтомный справочник, являющийся главной настольной книгой нескольких поколений инженеров-механиков и претерпевший около десяти переизданий, и сегодня продолжает являться востребованным и актуальным. Я думаю, он должен обязательно быть у каждого инженера, тем более что найти его в Сети – не проблема. Конечно, интересующие нас формулы можно найти и в другой справочной литературе.

Для двутавров, швеллеров, уголков, труб и прочих прокатных и гнутых профилей, широко применяемых в машиностроении и строительстве, геометрические характеристики сечений, включая моменты инерции, можно найти в таблицах ГОСТов, ОСТов и прочих нормативных документов, которые регламентируют их изготовление.

Балки и стержни, составленные из двух или более элементарных профилей, применяют для повышения прочности и жесткости элементов при отсутствии адекватной с точки зрения массы и габаритов замены одиночным профилем. На практике – это спаренные уголки, двухветвевые колонны, балки с усиленным листовой полосой поясом и другие случаи.

Геометрические характеристики составного сечения. Расчет в Excel.

В статье мы рассматривали в качестве примера составную фигуру, состоящую из треугольника и прямоугольника с вырезом в виде полукруга. Продолжим работу с этим примером. Хотя балку, имеющую столь причудливое сечение, на практике нигде и никогда, наверное, не встретишь, для не очень сложного и наглядного примера она нам подойдет!

Запускаем программу MS Excel или программу OOo Calc, и начинаем работу!

С общими правилами форматирования электронных таблиц, применяемыми в статьях блога, можно ознакомиться .

Из вышеупомянутой статьи мы уже знаем координаты центров тяжести, площади элементов сечения и площадь всего составного сечения. В этой статье продолжим начатую работу, и выполним расчет других геометрических характеристик.

Исходные данные:

Пункты 1 , 2 , 3 копируем из файла и заполняем диапазон ячеек D3:F6.

4. Рассчитаем осевые и центробежные моменты инерции элементов относительно собственных центральных осей Ixi , Iyi , Ixiyi в см4, воспользовавшись формулами из «Справочника конструктора-машиностроителя» В.И. Анурьева

в ячейке D7: =80*40^3/12/10000 =42,667

Ix 1 = a 1 *(b 1 ^3)/12

в ячейке D8: =40*80^3/12/10000 =170,667

Iy1 = b1 *(a1 ^3)/12

в ячейке D9: =0 =0,000

Ix 1 y 1 = 0 (элемент с осевой симметрией)

в ячейке E7: =24*42^3/36/10000 =4,939

Ix 2 = a 2 *(h 2 ^3)/36

в ячейке E8: =42*24^3/48/10000 =1,210

Iy 2 = h 2 *(a 2 ^3)/48

в ячейке E9: =0 =0,000

Ix 2 y 2 = 0 (элемент с осевой симметрией)

в ячейке F7: =- (ПИ()/8*26^4-8/9/ПИ()*26^4)/10000 =-5,016

Ix 3 =- (π /8)*(r 3 ^4) — (8/(9* π ))*(r 3 ^4)

в ячейке F8: =-ПИ()/8*26^4/10000 =-17,945

Iy 3 =- (π /8)*(r 3 ^4)

в ячейке F9: =0 =0,000

Ix 3 y 3 = 0 (элемент с осевой симметрией)

Осевые моменты инерции третьего элемента – полукруга – отрицательны потому, что это вырез в прямоугольнике – пустое место!

Расчет геометрических характеристик:

Пункты 5 , 6 , 7 копируем из файла и заполняем объединенные ячейки D11E11F11…D15E15F15.

8. Рассчитаем осевые и центробежный моменты инерции сечения относительно центральных осей x0 и y0, проведенных через центр тяжести Ix 0 , Iy 0 , Ix 0 y 0 в см4

в объединенной ячейке D16E16F16: =((D5-D15)^2*D6+(E5-D15)^2*E6+(F5-D15)^2*F6)/10000+D7+E7+F7 =90,122

Ix 0 = Σ ((yci Yc )^2* Fi )+ ΣIxi

в объединенной ячейке D17E17F17: =((D4-D14)^2*D6+(E4-D14)^2*E6+(F4-D14)^2*F6)/10000+D8+E8+F8 =159,678

Iy 0 = Σ ((xci Xc )^2* Fi )+ ΣIyi

в объединенной ячейке D18E18F18: =((D5-D15)*(D4-D14)*D6+(E5-D15)*(E4-D14)*E6+(F5-D15)*(F4-D14)*F6)/10000+D9+E9+F9 =-50,372

Ix0y0 = Σ ((yci -Yc )*(xci -Xc )*Fi )+ Σ Ixiyi

9. Вычислим главные центральные моменты инерции сечения Iv и Iu в cм4

в объединенной ячейке D19E19F19: =($D$16+$D$17)/2+((($D$16-$D$17)/2)^2+$D$18^2)^0,5 =186,111

Iv =(Ix0 +Iy0 )/2+(((Ix0 -Iy0 )/2)^2+Ix0y0 ^2)^0,5

в объединенной ячейке D20E20F20: =($D$16+$D$17)/2- ((($D$16-$D$17)/2)^2+$D$18^2)^0,5 =63,689

Iu =(Ix0 +Iy0 )/2- (((Ix0 -Iy0 )/2)^2+Ix0y0 ^2)^0,5

10. Найдем угол наклона главной оси v к центральной оси x0 α в градусах

в объединенной ячейке D21E21F21: =ATAN (D18/(D20-D16))/ПИ()*180 =62,311

α =arctg (Ix0y0 /(Iu -Ix0 ))

11. И в заключении вычислим радиусы инерции составного сечения iv и iu в мм

в объединенной ячейке D22E22F22: =(D19*10000/D11)^0,5 =26,540

iv =(Iv / F 0 )^0,5

в объединенной ячейке D23E23F23: =(D20*10000/D11)^0,5 =15,526

iu =(Iu / F 0 )^0,5

Задача выполнена – вычислены моменты инерции и радиусы инерции составного сечения из трех простых элементов! Получены все необходимые данные для построения эллипса инерции.

Файл Excel с расчетной программой позволяет легко выполнить полный расчет геометрических характеристик поперечного сечения балки, состоящего из двух или трех простых элементов. При необходимости несложно расширить возможности расчетного модуля до большего количества элементов.

Для получения информации о новых статьях и для скачивания рабочих файлов программ прошу Вас подписаться на анонсы в окне, расположенном в конце каждой статьи или в окне вверху страницы.

Не забывайте подтвердить подписку кликом по ссылке в письме, которое тут же придет к вам на указанную почту (может прийти в папку « Спам» )!!!

С интересом прочту ваши комментарии, уважаемые читатели!!! Поделитесь своими мыслями!

Прошу уважающих труд автора скачивать файл с программой расчета после подписки на анонсы статей!

Осевым (или экваториальным) моментом инерции сечения относительно некоторой оси называется взятая по всей его площади F сумма произведений элементарных площадок на квадраты их расстояний от этой оси, т. е.

Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей его площади F сумма произведений элементарных площадок на квадраты их расстояний от этой точки, т. е.

Центробежным моментом инерции сечения относительно некоторых двух взаимно перпендикулярных осей называется взятая по всей его площади F сумма произведений элементарных площадок на их расстояния от этих осей, т.е.

Моменты инерции выражаются в и т.д.

Осевые и полярные моменты инерции всегда положительны, так как в их выражения под знаки интегралов входят величины площадок (всегда положительные) и квадраты расстояний этих площадок от данной оси или полюса.

На рис. 9.5, а изображено сечение площадью F и показаны оси у и z. Осевые моменты инерции этого сечения относительно осей у :

Сумма этих моментов инерции

и, следовательно,

Таким образом, сумма осевых моментов инерции сечения относительно двух взаимно перпендикулярных осей равна полярному моменту инерции этого сечения относительно точки пересечения указанных осей.

Центробежные моменты инерции могут быть положительными, отрицательными или равными нулю. Так, например, центробежный момент инерции сечения, показанного на рис. 9.5, а, относительно осей у и положителен, так как для основной части этого сечения, расположенной в первом квадранте, значения , а следовательно, и положительны.

Если изменить положительное направление оси у или на обратное (рис. 9.5,б) или повернуть обе эти оси на 90° (рис. 9.5, в), то центробежный момент инерции станет отрицательным (абсолютная величина его не изменится), так как основная часть сечения будет тогда располагаться в квадранте, для точек которого координаты у положительны, а координаты z отрицательны. Если изменить положительные направления обеих осей на обратные, то это не изменит ни знак, ни величину центробежного момента инерции.

Рассмотрим фигуру, симметричную относительно одной или нескольких осей (рис. 10.5). Проведем оси так, чтобы хотя бы одна из них (в данном случае ось у) совпадала с осью симметрии фигуры. Каждой площадке расположенной справа от оси соответствует в этом случае такая же площадка расположенная симметрично первой, но слева от оси у. Центробежный момент инерции каждой пары таких симметрично расположенных площадок равен:

Следовательно,

Таким образом, центробежный момент инерции сечения относительно осей, из которых одна или обе совпадают с его осями симметрии, равен нулю.

Осевой момент инерции сложного сечения относительно некоторой оси равен сумме осевых моментов инерции составляющих его частей относительно этой же оси.

Аналогично центробежный момент инерции сложного сечения относительно любых двух взаимно перпендикулярных осей равен сумме центробежных моментов инерции составляющих его частей относительно этих же осей. Также и полярный момент инерции сложного сечения относительно некоторой точки равен сумме полярных моментов инерции составляющих его частей относительно той же точки.

Следует иметь в виду, что нельзя суммировать моменты инерции, вычисленные относительно различных осей и точек.


05-12-2012: Адольф Сталин

Было бы неплохо объяснить на наглядном примере для особо одаренных, типа меня, что такое момент инерции и с чем его едят. На специализированных сайтах как-то всё очень запутанно, а у Дока есть явный талант довести информацию, быть может не самую сложную, но очень грамотно и понятно

05-12-2012: Доктор Лом

В принципе, что такое момент инерции и откуда он взялся, достаточно подробно объяснено в статье "Основы сопромата, расчетные формулы", здесь лишь повторюсь: "W - это момент сопротивления поперечного сечения балки, другими словами, площадь сжимаемой или растягиваемой части сечения балки, умноженная на плечо действия равнодействующей силы". Момент сопротивления необходимо знать для расчетов конструкции на прочность, т.е. по предельным напряжениям. Момент инерции необходимо знать для определения углов поворота поперечного сечения и прогиба (смещения) центра тяжести поперечного сечения, так как максимальные деформации возникают в самом верхнем и в самом нижнем слое изгибаемой конструкции, то определить момент инерции можно, умножив момент сопротивления на расстояние от центра тяжести сечения до верхнего или нижнего слоя, поэтому для прямоугольных сечений I=Wh/2. При определении момента инерции сечений сложных геометрических форм сначала сложная фигура разбивается на простейшие, затем определяются площади сечения этих фигур и моменты инерции простейших фигур, затем площади простейших фигур умножаются на квадрат расстояния от общего центра тяжести сечения до центра тяжести простейшей фигуры. Момент инерции простейшей фигуры в составе сложного сечения равен моменту инерции фигуры + квадрат расстояния умноженный на площадь. Затем полученные моменты инерции суммируются и получается момент инерции сложного сечения. Но это максимально упрощенные формулировки (хотя, соглашусь, все равно выглядит достаточно мудрено). Со временем напишу отдельную статью.

20-04-2013: Petr

Не нужно полностью доверять поданной в сайтах информации. Её никто по-хорошему не проверяет. И ссылки на неё не даются. Так в Таблице 1. "Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм" для тонкостенной трубы дается определение, что отношение диаметра к толщине оболочки должно быть больше 10. По другим источникам - должно быть больше 20!!! (Н.М. Беляев. Сопротивление материалов. М.1996. стр.160. или Н.И.Безухов. Основы теории упругости, пластичности и ползучести.М.1961.стр.390)

21-04-2013: Доктор Лом

Верно. Доверять нельзя. Но логическое мышление пока никто не отменял. Самый правильный вариант - рассчитывать момент инерции или момент сопротивления для любой трубы по формулам, приведенным для обычной трубы (на 1 пункт выше). Формулы, приводимые для тонкостенной трубы, в любом случае будут приближенными и годятся только для первичного расчета и об этом забывать нельзя.
Впрочем параметры максимально допустимой толщины стенки исправил.

25-06-2013: Саня

требуется определить момент инерции для сложного нестандартного сечения. сечение: прямоугольник с двумя пазами. внешне похоже на букву "Ш". не получается найти какую либо информацию. буду признателен за какую нибудь информацию

25-06-2013: Доктор Лом

Посмотрите статью "Расчет прочности потолочного профиля для гипсокартона" (http://сайт/item249.html)
там в частности определяется момент инерции тоже не совсем простого сечения.

04-11-2014: Доктор Лом

Формула из приведенного вами источника неправильная (ею можно пользоваться только для приблизительных вычислений) и проверить это легко.
Чтобы определить момент инерции сечения трубы, достаточно вычесть из момента инерции стержня круглого сечения (тут при вычислениях используется наружный диаметр трубы) момент инерции отверстия (внутренний диаметр, ведь внутри трубы никакого материала нет, на то она и труба). После простейших математических преобразований мы получим формулу момента инерции трубы, приведенную в таблице.
А для того, чтобы определить момент сопротивления, нужно момент инерции разделить на максимальное расстояние от центра тяжести до самой дальней точки сечения, соответственно на D/2, или умножить на 2/D.
В итоге получить указанную вами формулу невозможно и чем толще будет стенка трубы, тем больше будет погрешность при использовании этой формулы.

04-11-2014: Радик

Спасибо, док!

11-11-2014: Ильгам

Не смог найти инфо о том в каких единицах (мм, см, м) все значения в формулах.
Попробовал посчитать Wz для уголка 210х90мм (если у швел.24П срезать верхнюю полку), получилось 667,5 см3, при условии что все значения в см.
Для примера, у швел.24П (до срезания полки) Wx(Wz)=243 см3.

11-11-2014: Доктор Лом

Это общие формулы. В каких единицах подставите значения, в таких и получите результат, только само собой уже в кубических. Но если начали подставлять, например, в сантиметрах, то так и нужно продолжать.
У швеллера без полки момент сопротивления по умолчанию не может быть больше чем у целого швеллера. Для приблизительного определения момента сопротивления швеллера без полки вы можете воспользоваться формулами для неравнополочного уголка (только для определения Wz, для Wy эти формулы не подойдут).

04-01-2015: Valerij

Если сечение трубы ослаблено несколькими значительными отверстиями, как учесть это при расчёте момента инерции и момента сопротивления? Труба 32.39см и в ней 9 отв. диам.2.8см в сечении(шаг отвермтий 10см. по длине трубы).

05-01-2015: Доктор Лом

Для определения момента инерции вам нужно вычесть из момента инерции трубы момент инерции вашего отверстия. Для этого нужно определить площадь сечения отверстия и затем умножить ее на квадрат расстояния до центра трубы плюс собственный момент инерции отверстия. Больше подробностей в статье "Моменты инерции поперечных сечений".
Если расчет не требует особой точности и диаметр отверстия в 5 и более раз меньше диаметра трубы (вроде ваш случай, если 32.39 - это наружный диаметр), то сегмент отверстия можно привести к прямоугольнику. Если отверстие не сквозное, то следует дополнительно определить положение центра тяжести трубы с отверстием для того, чтобы потом вычислить новое значение момента сопротивления.
Но и это еще не все. Вам следует учесть, что возле отверстий возникают значительные локальные напряжения.

09-10-2015: Борис

Неравноплечий уголок.При вычислении Wy не y,а H-y

09-10-2015: Доктор Лом

Не пойму, о чем вы. Определение момента сопротивления относительно оси у в таблицах вообще не приводится.

09-10-2015: Борс

Для треугольников при вычислении Wzп h в квадрате.

09-10-2015: Борис

09-10-2015: Доктор Лом

Все верно. Теперь понял, о чем вы. Более корректно было бы указать момент сопротивления для верхней и для нижней части сечения, а я указал только для нижней. Ну а при определении момента сопротивления треугольников банально пропущен квадрат.
Исправил. Спасибо за внимательность.

28-04-2016: Jama

Здравствуете! Кто может помочь о правильности расчета http://ej.kubagro.ru/2011/02/pdf/19.pdf
я не могу понят откуда значение берется момент сопротивления. Помогите пожалуйста! 21-03-2017: игорь

здравствуйте,Сергей. я прочитал некоторые ваши статьи,очень интересно и понятно(в основном).я хотел бы рассчитать балку двутаврового сечения,но не могу найти Ix и Wx. дело в том что она не стандартная,я её буду делать сам,из дерева.можете ли вы мне помочь? я оплачу.только я не смогу оплатить электронными средствами т.к. не знаю как этим пользоваться.

21-03-2017: Доктор Лом

Игорь, я отправил вам письмо.

30-08-2017: Али

Уважаемый доктор, желаю вам всего найлучшего. Помогите пожалуйста, какими формулами нужны для подбора и проверки на прочность балку следующих сечений,:Швеллер,уголок и бульбовый профиль, имея допускаемый момент сопротивления W=58,58cm3. спасибо большое и жду вашу помощь.

31-08-2017: Доктор Лом

Посмотрите статью "Расчет стальных однопролетных балок с шарнирными опорами при изгибе согласно СП 16.13330.2011", там все достаточно подробно расписано.

13-11-2017: Абдуахад

Здравствуйте пожалуйста подскажите почему Ql^2/8 почему деленная на 8 и почему иногда делим на 6 и 24 итд подскажите пожалуйста только это не понял

В расчетной практике часто встречаются сечения в виде простейших фигур (прямоугольников, кругов, треугольников и т. п.) или их комбинаций. При вычислении моментов инерции таких фигур обычно пользуются заранее выведенными расчетными формулами. Рассмотрим некоторые из фигур.

Прямоугольник и параллелограмм (рис. 6.4). Выделим элементарную полоску площадью dF = bdy и подставим это значение dF под знак интеграла (6.5):

Моменты инерции этих фигур относительно осей, проходящих через основание, находим по формуле (6.13):

.

Моменты инерции прямоугольника относительно осей y c и y вычисляются по формулам (6.16) и (6.17), где b заменяется на h , а h на b :

Подсчитывая по формулам переноса момент инерции треугольника относительно центральной оси, параллельной основанию, получаем

Обычно размеры круглого сечения выражают через диаметр d и подсчитывают I p по формуле

Центральные оси y и z делят круг на четыре совершенно одинаковые части с равными моментами инерции относительно этих осей. Следовательно, моменты инерции круга и полукруга относительно осей y и z должны быть равны соответственно учетверенным и удвоенным моментам инерции относительно тех же осей одной четверти круга. Из сказанного следует, что моменты инерции полукруга относительно оси симметрии y и оси z , проходящей через его основание (рис. 6.2), будут одинаковы и равны половине момента инерции круга,

а моменты инерции четверти круга