Блок питания: что можно сделать из энергосберегающей лампы? Эксплуатация и ремонт компактных люминесцентных ламп Схема компактной люминесцентной лампы.

Несмотря на небольшие размеры энергосберегающих ламп, в них много электронных компонентов. По своему устройству это обычная трубчатая люминесцентная лампа с миниатюрной колбой, но только свернутой в спираль или иную пространственную компактную линию. Ее поэтому называют компактной люминесцентной лампой (в сокращении КЛЛ).

И для нее характерны все те же самые проблемы и неисправности, что и для больших трубчатых лампочек. Но электронный балласт лампочки, которая перестала светить, скорее всего, из-за перегоревшей спирали, обычно сохраняет свою работоспособность. Поэтому его можно использовать для каких-либо целей как импульсный блок питания (в сокращении ИБП), но с предварительной доработкой. Об этом и пойдет речь далее. Наши читатели узнают, как сделать блок питания из энергосберегающей лампы.

В чем разница между ИБП и электронным балластом

Сразу предупредим тех, кто ожидает получение мощного источника питания из КЛЛ – большую мощность получить в результате простой переделки балласта нельзя. Дело в том, что в катушках индуктивности, которые содержат сердечники, рабочая зона намагничивания жестко ограничена конструкцией и свойствами намагничивающего напряжения. Поэтому импульсы этого напряжения, создаваемые транзисторами, точно подобраны и определены элементами схемы. Но такой блок питания из ЭПРА вполне достаточен для питания светодиодной ленты. Тем более что импульсный блок питания из энергосберегающей лампы соответствует ее мощности. А она может быть до 100 Вт.

Наиболее распространенная схема балласта КЛЛ построена по схеме полумоста (инвертора). Это автогенератор на основе трансформатора TV. Обмотка TV1-3 намагничивает сердечник и выполняет при этом функцию дросселя для ограничения тока через лампу EL3. Обмотки TV1-1 и TV1-2 обеспечивают положительную обратную связь для появления напряжения, управляющего транзисторами VT1и VT2. На схеме красным цветом показана колба КЛЛ с элементами, которые обеспечивают ее запуск.

Пример распространенной схемы балласта КЛЛ

Все катушки индуктивности и емкости в схеме подобраны так, чтобы получить в лампе точно дозированную мощность. С ее величиной связана работоспособность транзисторов. А поскольку они не имеют радиаторов, не рекомендуется стремиться получать от переделанного балласта значительную мощность. В трансформаторе балласта нет вторичной обмотки, от которой питается нагрузка. В этом главное отличие его от ИБП.

В чем суть реконструкции балласта

Чтобы получить возможность подключения нагрузки к отдельной обмотке, надо либо намотать ее на дросселе L5, либо применить дополнительный трансформатор. Переделка балласта в ИБП предусматривает:



Для дальнейшей переделки электронного балласта в блок питания из энергосберегающей лампы надо принять решение относительно трансформатора:

  • использовать имеющийся дроссель, доработав его;
  • либо применить новый трансформатор.

Трансформатор из дросселя

Далее рассмотрим оба варианта. Для того чтобы воспользоваться дросселем из электронного балласта, его надо выпаять из платы и затем разобрать. Если в нем применен Ш-образный сердечник, он содержит две одинаковые части, которые соединены между собой. В рассматриваемом примере для этой цели применена оранжевая клейкая лента. Она аккуратно удаляется.
Удаление ленты, стягивающей половинки сердечника

Половинки сердечника обычно склеены так, чтобы между ними оставался зазор. Он служит для оптимизации намагничивания сердечника, замедляя этот процесс и ограничивая скорость нарастания тока. Берем наш импульсный паяльник и нагреваем сердечник. Прикладываем его к паяльнику местами соединения половинок.


Разобрав сердечник, получаем доступ к катушке с намотанным проводом. Обмотку, которая уже есть на катушке, отматывать не рекомендуется. От этого изменится режим намагничивания. Если свободное место между сердечником и катушкой позволяет обернуть один слой стеклоткани для улучшения изоляции обмоток друг от друга, надо сделать это. А потом намотать десять витков вторичной обмотки проводом подходящей толщины. Поскольку мощность нашего блока питания будет небольшой, толстый провод не нужен. Главное, чтобы он поместился на катушке, и половинки сердечника наделись на него.


Намотав вторичную обмотку, собираем сердечник и закрепляем половинки клейкой лентой. Предполагаем, что после тестирования БП станет понятно, какое напряжение создается одним витком. После тестирования разберем трансформатор и добавим необходимое число витков. Обычно переделка имеет целью сделать преобразователь напряжения с выходом 12 В. Это позволяет получить при использовании стабилизации зарядное устройство для аккумулятора. На такое же напряжение можно сделать и из энергосберегающей лампы, а также зарядить фонарик с питанием от аккумулятора.

Поскольку трансформатор нашего ИБП, скорее всего, придется доматывать, впаивать его в плату не стоит. Лучше припаять проводки, торчащие из платы, и к ним на время тестирования припаять выводы нашего трансформатора. Концы выводов вторичной обмотки надо очистить от изоляции и покрыть припоем. Затем либо на отдельной панельке, либо прямо на выводах намотанной обмотки надо собрать выпрямитель на высокочастотных диодах по схеме моста. Для фильтрации в процессе измерения напряжения достаточно конденсатора 1 мкФ 50 В.



Тестирование ИБП

Но перед присоединением к сети 220 В последовательно с нашим блоком, переделанным своими руками из лампы, обязательно соединяется мощный резистор. Это мера соблюдения безопасности. Если через импульсные транзисторы в блоке питания потечет ток короткого замыкания, резистор его ограничит. Очень удобным резистором в таком случае может стать лампочка накаливания на 220 В. По мощности достаточно применить 40–100-ваттную лампу. При коротком замыкании в нашем устройстве лампочка будет светиться.


Далее присоединяем к выпрямителю щупы мультиметра в режиме измерения постоянного напряжения и подаем напряжение 220 В на электрическую цепь с лампочкой и платой источника питания. Предварительно обязательно изолируются скрутки и открытые токоведущие части. Для подачи напряжения рекомендуется применить проводной выключатель, а лампочку вложить в литровую банку. Иногда они при включении лопаются, а осколки разлетаются по сторонам. Обычно испытания проходят без проблем.

Более мощный ИБП с отдельным трансформатором

Они позволяют определить напряжение и необходимое число витков. Трансформатор дорабатывается, блок снова испытывается, и после этого его можно применить как компактный источник питания, который намного меньше аналога на основе обычного трансформатора 220 В со стальным сердечником.

Чтобы увеличить мощность источника питания, надо применить отдельный трансформатор, сделанный аналогично из дросселя. Его можно извлечь из лампочки большей мощности, сгоревшей полностью вместе с полупроводниковыми изделиями балласта. За основу берется та же схема, которая отличается присоединением дополнительного трансформатора и некоторых других деталей, изображенных красными линиями.


Выпрямитель, показанный на изображении, содержит меньше диодов по сравнению с выпрямительным мостом. Но для его работы потребуется больше витков вторичной обмотки. Если они не вмещаются в трансформатор, надо применить выпрямительный мост. Более мощный трансформатор делается, например, для галогенок. Кто использовал обычный трансформатор для системы освещения с галогенками, знает, что они питаются достаточно большим по величине током. Поэтому трансформатор получается громоздким.

Если транзисторы разместить на радиаторах, мощность одного блока питания можно заметно увеличить. А по весу и габаритам даже несколько таких ИБП для работы с галогенными светильниками получатся меньше и легче одного трансформатора со стальным сердечником равной им мощности. Другим вариантом использования работоспособных балластов экономок может быть их реконструкция для светодиодной лампы. Переделка энергосберегающей лампы в светодиодную конструкцию очень проста. Лампа отсоединяется, а вместо нее подключается диодный мост.

На выходе моста подключается определенное количество светодиодов. Их можно подключить между собой последовательно. Важно, чтобы ток светодиода равнялся току в КЛЛ. можно назвать ценным полезным ископаемым в эпоху светодиодного освещения. Они могут найти применение даже после завершения своего срока службы. И теперь читатель знает детали этого применения.

Современные производители предлагают энергоэффективные лампы разных размеров, мощностей, оснащенных различными цоколями. Также осветительные приборы имеют разное строение, от чего отличаются их схемы. В зависимости от компании-производителя, можно выбрать изделия с более сложными механизмами, которые будут иметь качественные элементы электронного пускорегулирующего аппарата (ЭПРА).

Особенности схем

На рынке есть недорогие модели, однако в них часто не хватает важных компонентов, влияющих на срок эксплуатации изделий. Самыми популярными в России являются такие изготовители:

  • Navigator (отечественный производитель);
  • MAXUS (международная британско-английская корпорация);
  • DeLux (китайский производитель);
  • Camelion (зонтичный бренд, зарожденный в Гонконге и удачно интегрированный в наши дни в Европе, Азии и Америке).

Схема энергосберегающей лампы – это ее, так называемое, сердце, при помощи которого функционирует весь осветительный прибор. В состав электронной платы могут входить детали различного качества и величины, в зависимости от добросовестности производителя. Стоит отметить, что приборы высокой мощности, эквивалентные лампам накаливания на 105 и выше ватт, не могут иметь мелких элементов, так как для обеспечения нормальной работы электросхема должна быть оснащена массивными деталями.

Если сравнивать лампочки «Максус» и «Навигатор», можно убедиться, что их комплектующие будут разными. Это значит, что компании сотрудничают с различными производителями электродеталей или используют разные подходы к самостоятельному созданию этих элементов.

В целом же, все схемы ламп на 20, 30, 60 W и выше будут очень похожими между собой, что помогает производить их ремонт, если какие-то механизмы выходят из строя.

Принцип действия экономки

Энергосберегающая лампа работает практически по такому же принципу, как и линейные люминесцентные лампы. Ее свечение обеспечивается прохождением напряжения через электроды, распложенные по краям стеклянной колбы. Трубка наполнена инертным газом и парами ртути или ее соединениями. Когда среда внутри лампы разогревается, образуются ионизованные электроны, которые с большой скоростью сталкиваются с атомами газа. Все это приводит к образованию низкотемпературной плазмы, выделяющей ультрафиолетовое излучение.

Однако человек не может воспринимать ни ультрафиолетовое, ни инфракрасное излучение. Для его преобразования в видимый для наших глаз свет используется специальное покрытие – люминофор. Проходя через него, лучи ультрафиолета превращаются в равномерное, яркое, насыщенное освещение.

Благодаря невысокой мощности, экономка на 20 Вт имеет больший КПД, чем лампа накаливания на 100 Вт. Рассмотрим, из-за чего лампочки помогают сберегать электроэнергию, и как они устроены.

Составляющие схемы

Энергосберегающий осветительный прибор состоит из самой лампы и электронного балласта, который еще называют электросхемой. Все элементы электроники созданы для того, чтобы обеспечивать бесперебойную и корректную работу лампы. Самая большая отличительная особенность данных устройств от обычных ламп накаливания заключается в том, что они работают от постоянного напряжения, а не переменного, который выдает сеть. Именно по этой причине ЭПРА вмонтирован в сам корпус лампочек, он используется для предобразования, распределения и защиты механизма. Схема включения содержит такие компоненты:

  • высоковольтные маломощные диоды;
  • помехозащитный дроссель;
  • транзисторы средней мощности;
  • электролит высоковольтный (чаще всего на 400 В);
  • конденсаторы различной емкости, но одного вольтажа (250 В);
  • высокочастотные трансформаторы (2 штуки);
  • резисторы.

Как происходит зажигание лампы

Когда напряжение попадает на динистор, образовывается импульс, который идет на транзистор и провоцирует его открытие. После того как запуск завершен, эта часть цепи блокируется диодом. После открытия транзистора конденсатор разряжается, что необходимо для предупреждения повторного открытия динистора. Транзисторы воздействуют на трансформатор. Он выполнен из ферритового колечка, обработанного тремя обмотками, расположенными в несколько рядов. Напряжение на нити дается через конденсатор с повышающего резонансного контура.

Свечение в трубке начинается на резонансной частоте, которую определяет конденсатор большей емкости. В момент зажигания его напряжение составляет до 600 Вт. При запуске оно превышает среднее в 5 раз, потому важно, чтобы колба была целой и герметичной. В противном случае возможно повреждение транзисторов.

После полной ионизации газа в колбе конденсатор с самой большей емкостью, который определял частоту свечения, шунтируется. Это приводит к понижению частоты и переходу управления генератором ко второму конденсатору. Генерируемое напряжение снижается, но остается в пределах такого, которое необходимо для поддержания горения лампочки.

Принципиальный момент заключается в том, что катод и анод поочередно меняются своими местами, это помогает обеспечить бесперебойность работы схемы и значительно упрощает ремонт, если его нужно сделать.

Устройство лампы

Кроме ЭПРА, вмонтированного в цоколь, важным элементом энергосберегающего осветительного прибора является лампа. Именно она отвечает за равномерность распределения света, его насыщенность, цветопередачу и другие свойства устройства. Условно разделить отделы колбы можно на нижний и верхний. В верхнем проделываются специальные отверстия, предназначенные для установки трубки. Нижняя часть содержит плату, в которой расположены детали, и от которой отходят выводы от трубки.

Верхняя область платы оснащена проводами, которые идут к цоколю. Крепиться друг к другу элементы лампы могут при помощи специальных защелок. В более дешевых моделях части склеивают. Если нужно сделать ремонт, по линии стыка надо провести отверткой или разъединить защелки.

Как производится ремонт

Для того чтобы определить, какие элементы схемы или самой лампы неисправны, ее нужно разобрать. Для этого отсоединяем верхнюю часть от нижней и отключаем колбу. При помощи Омметра производим проверку спиралей накала колбы. Если обнаружится, что перегорела одна спираль, ремонт колбы производится. Ее можно замкнуть резистором на 8-10 Ом. Резистор должен иметь большую мощность. Также нужно будет убрать диод, который шунтирует перегоревшую спираль, если он есть в схеме.

Если в лампах на 30 Вт и более перегорает резистор, большая вероятность того, что транзисторы также вышли из строя. Это происходит из-за пробоя конденсатора. Исправить ситуацию можно путем установки нового предохранителя (резистора) и транзисторов.

Кроме замены испорченных элементов схемы, можно произвести модернизацию лампы. Это делается путем просверливания в цоколе вентиляционных отверстий. В некоторых моделях они уже есть, а если производители не позаботились о надлежащем охлаждении элементов электроники, можно сделать это самостоятельно.

Внимание! Если вы просверлили в цоколе лампы на 30 W или осветительном приборе другой мощности вентиляционные отверстия, его нельзя использовать в помещениях с повышенной влажностью. Это может привести к пробою в конденсаторе и выходу лампы из строя.

Целесообразность вмешательства в схемы

Производить ремонт ламп на 30 W или другой мощности можно только в том случае, если вы уверенны в своих силах и знаниях. Когда же вы не понимаете, как устроена схема лампы, и что в ней может сломаться, лучше всего не пытайтесь самостоятельно устранить поломку.

Запрещено производить какие-либо действия с экономками, если нарушена целостность их колб. В трубке содержится ртуть или ее пары, потому при ее разгерметизации прибор становится опасным для здоровья и жизни человека.

Подытожим

Схемы практически одинаковы во всех моделях. Различия могут быть в наличии диодов, шунтирующих спиралей и других элементов. Однако если вы знаете устройство электроники одного прибора, то работать со всеми остальными будет довольно просто.

Схемами интересуются зачастую люди, которые хотят самостоятельно починить вышедшие из строя осветительные приборы. Делать это несложно, если вы имеете необходимые навыки и уверены, что экономку можно привести в рабочее состояние.

Обозначение «энергосберегающая лампа» (ЭЛ) больше касается люминесцентных компактных ламп с резьбовым цоколем любой мощности (7, 20 Вт и выше). Благодаря более компактным размерам, стандартному цоколю Эдисона в конструкции и отсутствию необходимости использовать вынесенный пускорегулирующий аппарат, такие лампочки более популярны, чем линейные конструкции того же типа.

Нюансы работы и устройства

Состоит из нескольких основных узлов: встроенный , колба с газообразным наполнением, цоколь. Принцип функционирования ЭЛ основывается на явлении под названием люминесценция. Внутренняя поверхность колбы покрыта люминофором. Это вещество может иметь разный состав, от чего будет зависеть качество освещения и соответственно целевое назначение источника света.

Устройство такой лампы предполагает наличие двух электродов, которые установлены в трубке. Под напряжением между ними возникает дуговой разряд. В колбе содержится ртуть в небольшой концентрации и инертный газ.

Благодаря такому содержимому образуется низкотемпературная плазма, которая в дальнейшем преобразуется в УФ-излучение, невидимое для глаз человека. На данном этапе главную роль играет люминофор, которым колба покрыта изнутри. Это вещество поглощает ультрафиолетовое излучение, в результате лампа выдает видимый свет.

Схема энергосберегающей лампы на 11 Вт выглядит следующим образом:

На рисунке можно увидеть питающие цепи, приводящие в работу дроссель L2, предохранитель F1, фильтрующий конденсатор C4 и диодный мост (4 диода 1N4007). В запуске участвуют динистор и элементы D1, С2, R6. Защитные функции реализуются посредством элементов R1, R3, D2, D3.

Для включения лампы необходимо обеспечить открытие транзистора Q2, что происходит при помощи R6, C2, а также динистора: эти элементы формируют импульс. Блокировка данного участка схемы выполняется с участием диода D1. Возбуждение трансформатора обеспечивается посредством транзисторов. Напряжение поступает с повышающего резонансного контура (L1, С3, С6, TR1).

Виды энергосберегающих ламп

Выбор источника света делается на основании отличий в форме, типе держателя, мощности. Играет роль и марка изделия. Наиболее популярные производители: Navigator, Philips, General Electric, Osram.

Устройство ЭЛ может быть разным, что определяется типом цоколя:

  • Е14, Е27, Е40 – цоколь Эдисона, благодаря чему источник света данного вида может устанавливаться вместо аналогов с нитью накаливания;
  • штырьковые держатели (G53, 2 D, G23, G24Q1-G24Q3).

По цветовой температуре различают следующие исполнения ЭЛ:

  • с теплым белым свечением (2 700 К);
  • с холодным светом (6 400 К);
  • источник дневного света (4 200 К).

Встречаются и разные колбы: U-образные, спиралевидные, шарообразные и грушевидные. Отличаются энергосберегающие лампочки еще и диаметром трубки: 7, 9, 12, 17 мм.

Обзор технических характеристик

При выборе следует учитывать все основные параметры источников света:

  1. Мощность (от 7 до 105 Вт). Для дома рекомендуется выбирать исполнения не более 20 Вт. Дело в том, что световой поток ЭЛ напрямую зависит от мощности: чем больше значение данного параметра, тем ярче свет. Для сравнения, лампа накаливания 100 Вт и люминесцентный компактный аналог 20 Вт выдают световой поток одинаковой силы.
  2. Тип цоколя. Подбирается, исходя из особенностей осветительного прибора, в который будет установлена лампа.
  3. Форма колбы. На качество работы этот параметр не влияет.
  4. Цветовая температура. Если источник света был выбран неправильно, такой свет будет вызвать дискомфорт вне зависимости от мощности (7, 20 Вт и выше) и других параметров.

Кроме того, при выборе ЭЛ необходимо обращать внимание на срок службы. В среднем лампа данного вида работает на протяжении 6 000-12 000 часов.

Плюсы и минусы эксплуатации

Популярность таких источников света обусловлена немалым количеством преимуществ:

  • снижение уровня энергопотребления (на 80%), соответственно, лампа мощностью 20 Вт работает не менее эффективно, чем аналог с нитью накаливания 100 Вт;
  • более длительный срок работы;
  • невысокая интенсивность нагрева;
  • равномерный свет;
  • широкий выбор исполнений, отличных по цветовой температуре.

К минусам можно отнести сравнительно высокую стоимость, наличие в колбе опасных для здоровья веществ, снижение эффективности в условиях низких температур, негативное воздействие на механизм частых коммутационных операций.

Кроме того, электрическая схема такого источника света не предусматривает использование диммера.

Таким образом, энергосберегающие лампочки во многом превосходят прочие аналоги (галогенные и лампы накаливания). В первую очередь это обусловлено снижением расходов на электричество, так как источник света на 20 Вт сможет заменить вариант с нитью накаливания, рассчитанный на 100 Вт.

Еще люминесцентные компактные лампочки выделяют меньше тепловой энергии, отличаются надежностью и компактными размерами. Форма колбы не влияет на эффективность работы, разве что отличается стоимость: спиралевидные исполнения предлагаются по более высокой цене.

В предыдущих частях, ссылки на которые приведены выше, были рассмотрены как общие технические характеристики, так и особенности конкретных компактных люминесцентных ламп. Но испытуемые сходят с тестирования случайным образом, да и свойства КЛЛ разных производителей несколько отличаются, что невольно поднимает интерес к внутреннему устройству ламп и детальному изучению технологии их работы. Данный материал рассчитан на подготовленного читателя, поэтому прошу извинить за возможные трудности с восприятием материала.

Электронная схема

Преобразователи для питания КЛЛ могут быть построены по различной схемотехнике, от вибропреобразователей до... Впрочем, не стоит забивать себе голову мудреными словами, практически все КЛЛ целевого диапазона выполнены по одной и той же концепции тысяча девятьсот махрового года – на резонансном полумостовом автогенераторе. Разработано много контроллеров для люминесцентных ламп, с различными функциями и крайне аккуратным отношением к лампе, но все это не прижилось.

Причина? Не думаю, что денежная, микросхемы при крупносерийном выпуске быстро теряют в цене. Тогда что сдерживает развитие прогресса? Скорее всего, консерватизм мышления («схема работает, и никто не жалуется»), и отсутствие заинтересованности в повышении качества и времени работы устройства. Думаю, у вас уже сложилось собственное мнение по данному вопросу, а потому я скромно умолкаю и перехожу к «нашим баранам».

Чаще всего преобразователь выполняется по следующей топологии:

Здесь представлена неполная схема - отсутствует входной фильтр, подавляющий высокочастотные помехи, диоды для защиты транзисторов от обратного напряжения и прочие мелочи. В нормальных КЛЛ эти компоненты присутствуют, но речь идет о лампах бюджетного сегмента, а потому – что есть, то есть. Кроме того, чрезмерное количество элементов усложняет анализ схемы. Полные варианты построения преобразователей легко .

Схему можно разделить на следующие части:

  • Входной выпрямительный узел (коричневый блок) – выпрямляет и сглаживает переменное напряжение сети 220 вольт, формирует постоянное напряжение около 280 вольт для питания преобразователя.
  • Схема запуска (синий блок) – запускает автогенератор при включении устройства.
  • Силовая часть (зеленый блок) – преобразует выпрямленное напряжение сети в переменное напряжение высокой частоты.
  • Управляющий трансформатор TV1.
  • Узел колбы (фиолетовый блок, совместно с дросселем L1) – согласует выход силовой части с колбой люминесцентной лампы.

Теперь несколько подробнее. Схема действительно весьма интересная, хоть и выглядит простой.

Напряжение сети выпрямляется диодным мостом и сглаживается электролитическим конденсатором («С1» на представленной электрической схеме), напряжение с него обеспечивает работу силовой части. Оно подается на два ключа (Q1 и Q2) на биполярных транзисторах npn проводимости, которые преобразуют его в переменное напряжение и передают на узел согласования с колбой.

Вся конструкция электронного балласта - это автогенератор. Устройство работает на некоторой частоте, которая зависит от отдельных характеристик ряда компонентов. Я не собираюсь лукавить, действительно так и есть – работа автогенераторных схем зависит от массы характеристик и крайне неустойчива. В нормальной схеме выделенный контроллер управляет силовыми ключами, и получаемые характеристики работы (частота, скважность) напрямую определяются из условий правильной работы люминесцентной лампы. Здесь же налицо «тупой» автогенератор, который просто работает и все. Впрочем, я несколько забежал вперед.

Забудем пока о лампе и цепи запуска, это отдельный разговор. Силовая часть состоит из двух ключей на транзисторах Q1 и Q2, управляемых трансформатором TV1, форма напряжения которого формируется от тока, проходящего через колбу, последний в свою очередь зависит от частоты и величины напряжения с выхода ключевых транзисторов Q1/Q2.

Он ее любил.
Она съела кусок мяса,
Он ее убил.
В яму закопал,
И надпись написал,
Что:
У попа была собака,
и так далее.

Именно так и работает автогенератор, «сам от себя», и разорвать этот порочный круг нельзя. Налаживать такие устройства – проще сразу застрелиться, они или сразу работают или… хорошо, если не взрываются. Единственный способ разобраться в вопросе – это разделить устройство на части и анализировать их независимо. При отладке так и поступают, цепь положительной обратной связи отключают, а на управляющий трансформатор подают сигнал с отдельного генератора. Если полениться и пойти простым путем с «просто включить», то кончится все хлопком и поиском очередной пары транзисторов. Для уменьшения риска рекомендуют включать лампу через ЛН (лампу накаливания), которая выполнит функции предохранителя при «эксцессе» в электронике. Прием очень хороший, только от горелых транзисторов не спасает.

Итак, силовые транзисторы Q1 и Q2 открываются попеременно, что обеспечивается полярностью обмоток управляющего трансформатора. Если положить, что на началах обмоток (отмечено точкой) в какой-то момент действует импульс положительной полярности, то на вход транзистора Q1 будет поступать положительное напряжение, а на Q2 - отрицательное. Это означает, что транзистор Q1 будет открыт, Q2 закрыт, и на выходе сформируется уровень напряжения, близкий к напряжению питания (несколько меньше, на величину напряжения насыщения коллектор-эмиттер Q1). Если управляющее напряжение сменит знак, то аналогично сменится и состояние транзисторов – Q1 закроется, а Q2 откроется, таким образом на выходе установится низкий уровень, почти 0 вольт.

Значит, на выходе получается переменное напряжение с уровнями «ноль» - «все питание» и периодом, зависящим от управляющего сигнала, который формируется трансформатором TV1. В качестве задающей входной величины для него выступает ток нагрузки. Если предельно упростить силовую часть, то она будет выглядеть следующим образом:

Через правую обмотку трансформатора к выходу ключевого каскада на транзисторах Q1/Q2 подключена нагрузка, состоящая из дросселя L1 и лампы (с парой конденсаторов и терморезистором PTC). Это означает, что ток через лампу является той величиной, что задает форму сигнала, который в свою очередь включает транзисторы. Так и хочется добавить: «А открывающиеся транзисторы формируют напряжение, которое вызывает ток, которое, которое…», круг замкнулся.

В данном «круге» обязательно должен быть элемент, определяющий рабочую частоту всего устройства, иначе устойчивое функционирование окажется невозможным. Для автогенераторного балласта КЛЛ таким ключевым элементом является резонансный контур из дросселя L1, конденсатора C4 и эквивалентного сопротивления лампы - классический вариант RLC контура.

Резонансная частота для данного построения зависит не только от величин реактивных компонентов (L1 и C4), но и от приведенного активного сопротивления лампы. Формула выглядит следующим образом:

Подробнее о резонансном контуре с последовательной и параллельной нагрузкой можно почитать в WikipediA . Хочется отметить важный момент – при уменьшении номинала сопротивления нагрузки происходит снижение резонансной частоты системы.

Подобное построение схемы будет обеспечивать работоспособность лампы, но ни о какой стабилизации не может быть и речи – устройство всегда будет стараться работать на резонансной частоте с максимальной отдачей. Это чересчур плохо, автоматическую регулировку вводить надо, но как? Ставить датчик тока, формировать опорное напряжение и обрабатывать усилителем ошибки? Еще немного и до полного ШИМ-преобразователя можно дойти. Это будет здорово, только глупо – давно уже разработаны микросхемы преобразователей люминесцентных ламп, дублировать их на транзисторах – задача идиотская. Как выйти из ситуации?

Усложнение схемы приведет к ее нецелесообразности, и это при том, что такое построение «почти устраивает». И решение было найдено (причем очень давно), его успешно применяют в устройствах со схожим принципом действия. Идея состоит в том, что управляющий трансформатор изготавливают не с обычным сердечником из магнитомягкого материала (феррита), а используют материал с прямоугольной петлей гистерезиса перемагничивания.

Дабы не наводить тень на плетень сразу перейдем к следствию замены обычного ферромагнитного материала на «особенный». Критерием переключения служит энергия (которая вызывает напряженность магнитного поля в магнитопроводе). Как только энергия превышает порог, за этим сразу следует переключение. Для данной схемы мерой накопления является количество витков первичной обмотки трансформатора и ток через нее. Данные характеристики являются ограничивающим фактором, регулирующим частоту импульсов для поддержания неизменного тока лампы.

Косвенно, на применение специального материала магнитопровода указывает соотношение числа витков – для нормальной работы «токового трансформатора» ток управления транзисторами должен быть примерно в десять раз меньше выходного тока, нельзя же загонять транзисторы в глубокое насыщение. В данном случае первичная обмотка состоит из восьми витков, а «вторичные» из трех, что означает коэффициент трансформации 2.7 и явно меньше озвученной ранее цифры. Подстройка характеристик преобразователя осуществляется не только количеством витков, но и номиналами резисторов в базах и эмиттерах транзисторов.

По счастью, нам не придется рассчитывать или оптимизировать блок преобразователя, поэтому весь этот «дремучий лес» я с радостью пропускаю. Отметим главное – схема как-то работает, и влезать в нее точно не стоит, это конструкция «сама в себе» и простой модернизации не приемлет.

Ладно, с преобразователем немного разобрались, но этот автогенератор может работать только в том случае, если он «уже» генерирует. Если импульсов нет, то нет тока через управляющий трансформатор и, как следствие, нет сигналов на открывание транзисторов, система «спит». Чтобы ее разбудить, применяется схема запуска, которая генерирует одиночный импульс для открывания нижнего транзистора (Q2), что вызывает запуск автогенератора.

Вернемся к первоначальной схеме. Блок запуска выделен синим прямоугольником, он состоит из резисторов R1 и R2, диодов D1 и D2, конденсатора С2. На этих элементах собран релаксационный генератор, работает он следующим образом: конденсатор С2 заряжается небольшим током через резистор R1 до напряжения пробоя динистора D2, обычно это около 30 вольт. При открывании D2 конденсатор С2 разряжается через базу транзистора Q2, что создает импульс запуска преобразователя КЛЛ. Через очень небольшое время напряжение на конденсаторе уменьшается до величины, при котором динистор выключается и далее цикл повторяется – напряжение на конденсаторе снова будет медленно расти до включения динистора.

Запускающий импульс есть, зачем же нужен диод D1? Дело в том, что релаксационный генератор будет генерировать свои импульсы постоянно. Они хоть и редки, но могут совпасть с моментом открытого состояния верхнего транзистора, что приведет к дополнительному открыванию и нижнего транзистора. В результате возникнет импульс тока большой величины через оба открытых ключа, подобный казус может закончиться только одним – сгоранием схемы. Таким образом, после выхода преобразователя в режим коммутации схему запуска надо блокировать от повторных попыток генерации, что и выполняется с помощью диода D1 – он разряжает конденсатор С2 в те моменты, когда транзистор Q2 открыт.

Остался резистор R2, и смысл его использования заключается в том, что он задает ненулевое напряжение на коллекторе транзистора Q2 (а точнее, на конденсаторе С3). Ну, сами посудите, какой смысл подавать запускающий импульс в базу нижнего транзистора, если на коллекторе нулевое напряжение и его включение никоим образом не скажется на состоянии других элементов. Резистор R2 гарантирует, что перед запуском напряжение на коллекторе «будет», в этом его смысл.

К слову, обычно подобных «фиксирующих» резисторов ставят не один, а два: первый – как изображено на схеме, второй – от коллектора Q2 на цепь «-» источника питания. Для полумостовой схемы вреден очень большой начальный импульс и применение пары резисторов позволяет снизить амплитуду в два раза. Впрочем, это мелочи.

Следующий элемент, на котором хочется остановить ваше внимание – узел сопряжения с лампой. Он состоит из конденсаторов С3 и С4, резистора R7 и самой лампы. Забудем на время о PTC, конденсаторе С3 и рассмотрим упрощенную схему блока лампы.

Под «V1» здесь понимается напряжение прямоугольной формы (меандр), которое создает узел преобразователя.

Для начала определимся с простым вопросом – что такое лампа? Это герметичная емкость с небольшим количеством ртути и заполненная инертным газом. По двум краям лампы установлены два катода прямого нагрева. К слову, его подогрев не обязательная функция, существуют разновидности люминесцентных ламп с «холодным» катодом (CCFL). После возникновения разряда между катодами возникает ток, который течет по спирали нити независимо от того, подано ли напряжение на выводы накала. Это значит, что даже при закороченных выводах накала его нить будет горячей. Впрочем, вопросы работы катода пока можно опустить, важны лишь два момента, касающиеся установившегося режима работы:

  • Накал всегда горячий, даже если его выводы закорочены.
  • Ток лампы течет через нить накала.

С самим накалом пока закончим и обратим взор на баллон лампы. Обычно он выполнен в виде тонкой трубки, завитой причудливым образом («U» или «спираль»). В ее недрах образуется разряд, который и вызывает столь ценное нам свечение. Для получения разряда между катодами требуется приложить высокое напряжение, что вызовет пробой с последующим переходом в тлеющий разряд. Этот режим характеризуется меньшим напряжением и большим током. Логично предположить, что у лампы два устойчивых состояния – пробой (высокое напряжение, малый ток) и нормальный режим (меньшее напряжение, относительно большой ток).

Пока оставим это здравое предположение под знаком вопроса и продолжим мысль дальше – а что произойдет, если преобразователь станет увеличивать напряжение на лампе? Больше напряжения – больше ток через нее, какие еще варианты? Проведем простую проверку – посмотрим ток через лампу. Я не привожу картинку, ввиду ее явной очевидности – форма тока полностью повторяет форму напряжения, подаваемого на лампу. Что ж, пока все сходится. Но «увы», внимательное чтение документации приносит некоторый диссонанс. В частности, в app. note # (THE L6569: A NEW HIGH VOLTAGE IC DRIVER FOR ELECTRONIC LAMP BALLAST) содержится рисунок 15, который приведен ниже, дабы вы не тратили время на изучение всего документа.

Из этого графика следует, что по мере увеличения тока через лампу напряжение на ней уменьшается. Гм. Диссонанс усиливается. В установившемся режиме на высокой частоте преобразователя форма тока через лампу характеризуется чисто активным видом, без реактивных составляющих, а по долговременному изменению режимов средняя величина тока весьма нелинейна. Уменьшение напряжения при увеличении тока говорит об отрицательном внутреннем сопротивлении лампы, что явно подразумевает ее склонность к самовозбуждению. Впрочем, плазма в лампе уже находится в некотором режиме объемного колебательного процесса – наверняка вы замечали различные плавающие спрайты в ее теле. Весьма досадно, что график на рисунке ограничен столь малым диапазоном, 0.1-0.23 ампера.

Попробую предположить, что при снижении тока тенденция сохранится, но вот вопрос – будет ли она монотонной? Строить собственный преобразователь с регулируемыми характеристиками очень долгая история, можно обойтись обычной КЛЛ с автогенераторным преобразователем, но с одним дополнением - добавить регулятор величины напряжения питания. Электронная схема достаточно адекватно работает от 70 вольт переменного напряжения, что позволяет изменять мощность лампы в несколько раз.

Менять величину переменного напряжения хлопотно, тиристорные регуляторы вообще неприменимы, поэтому я воспользовался устройством плавной подачи напряжения, что длительное время используется у меня в комнате. Первоначально блок плавного управления напряжением замышлялся для снижения стресса включения КЛЛ при отсутствии в них предварительного прогрева и уменьшения неприятных эффектов резкого включения света в ночное время суток. Была снята фаза включения лампы (16 секунд, 452 Кбайт) , можете посмотреть. Напряжение повышается довольно быстро, поэтому мне пришлось несколько разрядить кадры.

Уж не знаю, как это покажется вам, а я же наблюдаю несколько «рывков». Если посмотреть яркость в нескольких точках кадра и усреднить, то она будет меняться примерно следующим образом:

В начальный момент времени возникает разряд и начало свечения паров ртути, поэтому интервал до 200 мс не интересен, да и нет там ничего необычного. Но после 230 мс происходит резкое возрастание интенсивности с небольшой стабилизацией, после чего следует второй резкий скачок яркости. Напряжение питания повышается монотонно и довольно линейно, при разработке блока это было проверено, а потому резкое изменение свойств кажется странным. На данном графике наблюдаются два явных «рывка».

Можно было бы свалить все на прогрев ртути и образование паров, вот только включение этой же лампы при номинальном напряжении питания не показывает никаких необычных явлений. Погодите, где-то уже встречалось нечто подобное... В первой части статьи рассматривался случай включения холодной люминесцентной лампы и на графике наблюдалась одна странность, которую я не смог тогда объяснить.

Обратите внимание на середину графика зеленого цвета. Ничего похожего не наблюдаете?

Объяснение этому феномену простое, и я с ним уже сталкивался – у плазмы несколько устойчивых состояний. В древние советские времена у нас разрабатывался малогабаритный карманный телевизор, мне поручили вопрос подсветки. Полных данных о характеристиках той лампы не сохранилось, но примерные цифры я помню – напряжение пробоя 800 вольт, лампа находится в этом режиме до 0.8 мА. При увеличении тока выше этого порога напряжение резко снижается примерно до 200 вольт, это состояние сохраняется до тока 25 мА. При дальнейшем повышении тока напряжение падает до 45 В и в дальнейшем почти не изменяется.

Таким образом, преобразователь подсветки можно было строить на 45 вольт, но с обязательным обеспечением проскакивания состояния «200 В». Или же остаться в режиме горения «200 В», но с риском свалиться в низковольтовый режим. Телевизор питался от батареек НКГЦ-045, а потому избыточной мощности взяться неоткуда, пришлось ограничиться не особо устойчивым, но маломощным вариантом. К слову, пробовали и полноценный вариант, с обратноходовым преобразователем и накоплением энергии в конденсаторах, но конструкция получалась неудобной, да и советские конденсаторы не выдерживали работы при номинальном, но импульсном напряжении. Поставили обычный резонансный автогенератор, сейчас такое решение часто применяют в КЛЛ с питанием от 12 вольт. Впрочем, я отвлекся, извините.

Мораль сей басни такова – у плазмы в колбе есть «устойчивые» состояния, которые она может «занимать». Попробую предположить, что не только «занимать», но и переключаться между ними, коль скоро у нее отрицательное внутреннее сопротивление.

Подведем итог этого раздела – эквивалентное сопротивление лампы в режиме горения можно представить в виде резистора, только номинал этого «резистора» может принимать различные значения, в зависимости от величины тока через него.

Вернемся к схеме электронного балласта. Положим, схема работает, но за счет чего обеспечивается поддержание яркости свечения? Ранее высказывалось предположение, что стабилизирующую функцию выполняет особая конструкция управляющего трансформатора, который меняет длительность открытого состояния транзисторов, то есть рабочую частоту. Вот только преобразователь формирует прямоугольное напряжение (если говорить точнее - трапецеидальное), а на лампу приходит напряжение синусоидальной формы.

Дело в том, что между лампой и преобразователем стоит резонансный контур, образуемый последовательным дросселем и параллельным конденсатором. Эти элементы «поглощают» энергию преобразователя и формируют синусоидальное напряжение в нагрузке (то есть лампе), отдавая энергию в нее. Поэтому форма «возбуждающего» напряжения не важна, на выходе всегда будет «синус». Впрочем, небольшие искажения формы все равно присутствуют, добротность контура не слишком высока.

Возьмем некоторые «усредненные» параметры реактивных элементов для тестируемых ламп мощностью 15-25 Вт и сделаем симуляцию. При этом эквивалентное сопротивление лампы составит величину порядка 1 КОм, что позволит использовать ряд резисторов нагрузки и 1-2-4-8 КОм как характеристику работы системы в разных режимах горения.

Верхний рисунок показывает напряжение на лампе, нижний – ток через резонансный конденсатор.

Симулятор показывает результаты, сопоставимые с теоретическими выкладками – по мере снижения номинала резистора нагрузки также снижается резонансная частота, уменьшается напряжение, да и «резонансный» подъем становится меньше по величине (снижается добротность контура). Если очень утрировать, то случай с небольшой нагрузкой (8 КОм, красный график) можно приравнять к начальной фазе включения лампы, ей характерно высокое напряжение. Однако обратите внимание на ток через резонансный конденсатор (нижний рисунок). Если нагрузка нормальная (1-2 КОм, салатовый-синий графики), то ток через него относительно небольшой. Я не стал отмечать ток через сопротивление нагрузки, дабы не захламлять диаграмму. Для этих двух случаев ток через конденсатор меньше, чем через нагрузочное сопротивление. Если же номинал сопротивления повышать, то через конденсатор начинает протекать большой ток. А если учесть, что при этом на том же конденсаторе сильно возрастает напряжение, то реактивная мощность окажется просто огромной.

По симуляции выходит 0.92 ампера и 1.1 кВ, или 1 кВ*А. Термин «Вт» в данном случае не применим, мощность реактивная, а потому отмечается как «В*А». Понятно, что реальный преобразователь в КЛЛ не способен выработать такую мощность, даже на короткое время, но стрессовые условия функционирования обеспечены. Такой случай (небольшая нагрузка) возникает в момент включения лампы, поэтому неудивительно, что электроника так «любит» взрываться именно в момент включения. В решениях с использованием микросхем этот стрессовое состояние смягчают управлением частоты, не позволяя выставить рабочую частоту строго на порог резонанса (режим «разогрева»), что увеличивает срок службы всего устройства.

И здесь отметим крайне важный момент – если на лампе высокое напряжение (в момент возникновения разряда), то это означает крайне большую реактивную мощность, протекающую через резонансный конденсатор. Понятное дело, что та же мощность циркулирует и в резонансном дросселе, но они не «мрут как мухи» в КЛЛ, что столь «свойственно» резонансным конденсаторам.

Ранее рассматривался хоть и упрощенный, но достаточно функциональный вариант электронного балласта. Однако существует и еще более «дешевый» вариант исполнения той же схемы. Основные узлы остаются прежними, «упрощению» подвергается узел запуска. Если в первом варианте за запуск отвечал специальный элемент (динистор), стоимость которого… я не знаю точно, сколько стоит одна спичка? Но когда следует указание «экономить любой ценой!», то мы, покупатели, пожинаем плоды творчества «этих товарищей». Схема подобного исполнения выглядит примерно так:

На первый взгляд, схема стала несколько проще, убрались компоненты из центральной части.

Вся схема представляет собой усилитель с положительной обратной связью выход-вход, а потому генерировать он просто обязан, проблема заключается лишь в запуске. В ранее рассмотренном варианте схемы за этот момент отвечал узел на динисторе, здесь же он отсутствует. Для запуска используется перевод транзисторов из ключевого в слаботочный линейный режим работы. А именно, получается «как бы» обычный усилитель, который не может не возбудится. Для перевода транзисторов в усилительный режим необходимо обеспечить хотя бы небольшой ток коллектора в состоянии покоя, что осуществляется установкой резистора R1 между коллектором и базой транзистора Q2.

На рисунке представлен «упрощенный» вариант схемы с автозапуском, но существует и более «полный» вариант с переводом обоих транзисторов в усилительный режим. Впрочем, у него есть недостаток – приходится устанавливать большее количество деталей, а потому встречается реже. Коль скоро верхний транзистор (Q1) не проводит ток в состоянии покоя, то в схему требуется добавить резистор для создания такого тока. В данной реализации эту функцию выполняет резистор R2.

Если сравнивать первый и второй вариант исполнения балласта, то можно отметить, что:

  • Силовые компоненты одинаковые, различие проявляется только в момент запуска.
  • Вариант с динистором характеризуется четким порогом напряжения включения преобразователя.
  • Вариант с автозапуском не получил никаких четких границ и, потенциально, может никогда не включиться. Возможны проблемы с запуском при низких или высоких температурах, старении компонентов электронного балласта. Этот способ менее надежен – электролитические конденсаторы обладают явной тенденцией «высыхать» при высокой температуре.

Короче говоря, второй вариант явно хуже. И, что интересно, не обязательно дешевле – динистор заменяется электролитическим конденсатором, и кто из них меньше стоит?

Схемы с автозапуском отмечены в продукции торговой марки «GamBiT», поэтому я рассказал о существовании подобного схемного решения, а так… неприятно. Как разработчик аппаратуры, я крайне негативно отношусь к автогенераторным «штучкам» – они или работают или не работают, «и все». А автогенератор с автозапуском – это уже предел. К слову, подобное схемное решение уже применялось серийно, вспомните компьютерные блоки питания АТ (не путайте с ATX!). В них для запуска оба транзистора в полумосте переводились в слабый активный режим, что облегчало возникновение генерации. Одно «но», после запуска подавалось напряжение на микросхему управления, и она перехватывала контроль за коммутацией транзисторов. Здесь же чистый автогенератор. Что ж, бюджетнейшее решение, дальше некуда. И, конечно же, в ущерб качеству.

Благодаря малому энергопотреблению, теоретической долговечности и снижению цены стремительно вытесняют лампы накаливания и энергосберегающие. Но, несмотря на заявленный ресурс работы до 25 лет, зачастую перегорают, даже не отслужив гарантийный срок.

В отличие от ламп накаливания, 90% перегоревших светодиодных ламп можно успешно отремонтировать своими руками, даже не имея специальной подготовки. Представленные примеры помогут Вам отремонтировать отказавшие светодиодные лампы.

Прежде, чем браться за ремонт светодиодной лампы нужно представлять ее устройство. Вне зависимости от внешнего вида и типа применяемых светодиодов , все светодиодные лампы, в том числе и филаментные лампочки, устроены одинаково. Если удалить стенки корпуса лампы, то внутри можно увидеть драйвер, который представляет собой печатную плату с установленными на ней радиоэлементами.


Любая светодиодная лампа устроена и работает следующим образом. Питающее напряжение с контактов электрического патрона подается на выводы цоколя . К нему припаяны два провода, через которые напряжение подается на вход драйвера. С драйвера питающее напряжение постоянного тока подается на плату, на которой распаяны светодиоды.

Драйвер представляет собой электронный блок – генератор тока, который преобразует напряжение питающей сети в ток, необходимый для свечения светодиодов.

Иногда для рассеивания света или защиты от прикосновения человека к незащищенным проводникам платы со светодиодами ее закрывают рассеивающим защитным стеклом.

О филаментных лампах

По внешнему виду филаментная лампа похожа на лампу накаливания. Устройство филаментных ламп отличается от светодиодных тем, что в качестве излучателей света в них используется не плата со светодиодами, а стеклянная герметичная заполненная газом колба, в которой размещены один или несколько филаментных стержней. Драйвер находится в цоколе.


Филаментный стержень представляет собой стеклянную или сапфировую трубку диаметром около 2 мм и длиной около 30 мм, на которой закреплены и соединены последовательно покрытые люминофором 28 миниатюрных светодиодов. Один филамент потребляет мощность около 1 Вт. Мой опыт эксплуатации показывает, что филаментные лампы гораздо надежнее, чем изготовленные на базе SMD светодиодов. Полагаю, со временем они вытеснят все другие искусственные источники света.

Примеры ремонта светодиодных ламп

Внимание, электрические схемы драйверов светодиодных ламп гальванически связаны с фазой электрической сети и поэтому следует соблюдать предельную осторожность. Прикосновение не защищенным участком тела человека к оголенным участкам схемы подключенной к электрической сети может нанести серьезный урон здоровью, вплоть до остановки сердца.

Ремонт светодиодной лампы
ASD LED-A60, 11 Вт на микросхеме SM2082

В настоящее время появились мощные светодиодные лампочки, драйверы которых собраны на микросхемах типа SM2082. Одна из них проработала менее года и попала мне в ремонт. Лампочка бессистемно гасла и опять зажигалась. При постукивании по ней она отзывалась светом или гашением. Стало очевидно, что неисправность заключается в плохом контакте.


Чтобы добраться к электронной части лампы нужно с помощью ножа подцепить рассеивающее стекло в месте соприкосновения его с корпусом. Иногда отделить стекло трудно, так как при его посадке на фиксирующее кольцо наносят силикон.


После снятия светорассеивающего стекла открылся доступ к светодиодам и микросхеме – генератора тока SM2082. В этой лампе одна часть драйвера была смонтирована на алюминиевой печатной плате светодиодов, а вторая на отдельной.


Внешний осмотр не выявил дефектных паек или обрывов дорожек. Пришлось снимать плату со светодиодами. Для этого сначала был срезан силикон и плата поддета за край лезвием отвертки.

Чтобы добраться до драйвера, расположенного в корпусе лампы пришлось его отпаять, разогрев паяльником одновременно два контакта и сдвинуть вправо.


С одной стороны печатной платы драйвера был установлен только электролитический конденсатор емкостью 6,8 мкФ на напряжение 400 В.

С обратной стороны платы драйвера был установлен диодный мост и два последовательно соединенных резистора номиналом по 510 кОм.


Для того, чтобы разобраться в какой из плат пропадает контакт пришлось их соединить, соблюдая полярность, с помощью двух проводков. После простукивания по платам ручкой отвертки стало очевидным, что неисправность кроется в плате с конденсатором или в контактах проводов, идущих из цоколя светодиодной лампы.

Так как пайки не вызывали подозрений сначала проверил надежность контакта в центральном выводе цоколя. Он легко вынимается, если поддеть его за край лезвием ножа. Но контакт был надежным. На всякий случай залудил провод припоем.

Винтовую часть цоколя снимать сложно, поэтому решил паяльником пропаять пайки подходящих от цоколя проводов. При прикосновении к одной из паек провод оголился. Обнаружилась «холодная» пайка. Так как добраться для зачистки провода возможности небыло, то пришлось смазать его активным флюсом «ФИМ», а затем припаять заново.


После сборки светодиодная лампа стабильно излучала свет, не смотря за удары по ней рукояткой отвертки. Проверка светового потока на пульсации показала, что они значительны с частотой 100 Гц. Такую светодиодную лампу допустимо устанавливать только в светильники для общего освещения.

Электрическая схема драйвера
светодиодной лампы ASD LED-A60 на микросхеме SM2082

Электрическая схема лампы ASD LED-A60, благодаря применению в драйвере для стабилизации тока специализированной микросхемы SM2082 получилась довольно простой.


Схема драйвера работает следующим образом. Питающее напряжение переменного тока через предохранитель F подается на выпрямительный диодный мост, собранный на микросборке MB6S. Электролитический конденсатор С1 сглаживает пульсации, а R1 служит для его разрядки при отключении питания.

С положительного вывода конденсатора питающее напряжение подается непосредственно на последовательно включенные светодиоды. С вывода последнего светодиода напряжение подается на вход (вывод 1) микросхемы SM2082, в микросхеме ток стабилизируется и далее с ее выхода (вывод 2) поступает на отрицательный вывод конденсатора С1.

Резистор R2 задает величину тока, протекающего через светодиоды HL. Величина тока обратно пропорциональна его номиналу. Если номинал резистора уменьшить, то ток увеличится, если номинал увеличить, то ток уменьшится. Микросхема SM2082 допускает регулировать резистором величину тока от 5 до 60 мА.

Ремонт светодиодной лампы
ASD LED-A60, 11 Вт, 220 В, E27

В ремонт попала еще одна светодиодная лампа ASD LED-A60 похожая по внешнему виду и с такими же техническими характеристиками, как и выше отремонтированная.

При включении лампа на мгновенье зажигалась и далее не светила. Такое поведение светодиодных ламп обычно связано с неисправностью драйвера. Поэтому сразу приступил к разборке лампы.

Светорассеивающее стекло снялось с большим трудом, так как по всей линии контакта с корпусом оно было, несмотря на наличие фиксатора, обильно смазано силиконом. Для отделения стекла пришлось по всей линии соприкосновения с корпусом с помощью ножа искать податливое место, но все равно без трещины в корпусе не обошлось.


Для получения доступа к драйверу лампы на следующем шаге предстояло извлечь светодиодную печатную плату, которая была по контуру запрессована в алюминиевую вставку. Несмотря на то, что плата была алюминиевая, и можно было извлекать ее без опасения появления трещин, все попытки не увенчались успехом. Плата держалась намертво.

Извлечь плату вместе с алюминиевой вставкой тоже не получилось, так как она плотно прилегала к корпусу и была посажена внешней поверхностью на силикон.


Решил попробовать вынуть плату драйвера со стороны цоколя. Для этого сначала из цоколя был поддет ножом, и вынут центральный контакт. Для снятия резьбовой части цоколя пришлось немного отогнуть ее верхний буртик, чтобы места кернения вышли из зацепления за основание.

Драйвер стал доступен и свободно выдвигался до определенного положения, но полностью вынуть его не получалось, хотя проводники от светодиодной платы были отпаяны.


В плате со светодиодами в центре было отверстие. Решил попробовать извлечь плату драйвера с помощью ударов по ее торцу через металлический стержень, продетый через это отверстие. Плата продвинулась на несколько сантиметров и в что-то уперлась. После дальнейших ударов треснул по кольцу корпус лампы и плата с основанием цоколя отделились.

Как оказалось, плата имела расширение, которое плечиками уперлось в корпус лампы. Похоже, плате придали такую форму для ограничения перемещения, хотя достаточно было зафиксировать ее каплей силикона. Тогда драйвер извлекался бы с любой из сторон лампы.


Напряжение 220 В с цоколя лампы через резистор - предохранитель FU подается на выпрямительный мост MB6F и после него сглаживается электролитическим конденсатором. Далее напряжение поступает на микросхему SIC9553, стабилизирующую ток. Параллельно включенные резисторы R20 и R80 между выводами 1 и 8 MS задают величину тока питания светодиодов.


На фотографии представлена типовая электрическая принципиальная схема, приведенная производителем микросхемы SIC9553 в китайском даташите.


На этой фотографии представлен внешний вид драйвера светодиодной лампы со стороны установки выводных элементов. Так как позволяло место, для снижения коэффициента пульсаций светового потока конденсатор на выходе драйвера был вместо 4,7 мкФ впаян на 6,8 мкФ.


Если Вам придется извлекать драйвера из корпуса данной модели лампы и не получится извлечь светодиодную плату, то можно с помощью лобзика пропилить корпус лампы по окружности чуть выше винтовой части цоколя.


В конечном итоге все мои усилия по извлечению драйвера оказались полезными только для познания устройства светодиодной лампы. Драйвер оказался исправным.

Вспышка светодиодов в момент включения была вызвана пробоем в кристалле одного из них в результате броска напряжения при запуске драйвера, что и ввело меня в заблуждение. Надо было в первую очередь прозвонить светодиоды.

Попытка проверки светодиодов мультиметром не привела к успеху. Светодиоды не светились. Оказалось, что в одном корпусе установлено два последовательно включенных светоизлучающих кристалла и чтобы светодиод начал протекать ток необходимо подать на него напряжение 8 В.

Мультиметр или тестер, включенный в режим измерения сопротивления, выдает напряжение в пределах 3-4 В. Пришлось проверять светодиоды с помощью блока питания, подавая с него на каждый светодиод напряжение 12 В через токоограничивающий резистор 1 кОм.

В наличии небыло светодиода для замены, поэтому вместо него контактные площадки были замкнуты каплей припоя. Для работы драйвера это безопасно, а мощность светодиодной лампы снизиться всего на 0,7 Вт, что практически незаметно.

После ремонта электрической части светодиодной лампы, треснувший корпус был склеен быстро сохнущим супер клеем «Момент», швы заглажены оплавлением пластмассы паяльником и выровнены наждачной бумагой.

Для интереса выполнил некоторые измерения и расчеты. Ток, протекающий через светодиоды, составил 58 мА, напряжение 8 В. Следовательно мощность, подводимая на один светодиод составляет 0,46 Вт. При 16 светодиодах получается 7,36 Вт, вместо заявленных 11 Вт. Возможно производителем указана общая мощность потребления лампы с учетом потерь в драйвере.

Заявленный производителем срок службы светодиодной лампы ASD LED-A60, 11 Вт, 220 В, E27 у меня вызывает большие сомнения. В малом объеме пластмассового корпуса лампы, с низкой теплопроводностью выделяется значительная мощность - 11 Вт. В результате светодиоды и драйвер работают на предельно допустимой температуре, что приводит к ускоренной деградации их кристаллов и, как следствие, к резкому снижению времени их наработки на отказ.

Ремонт светодиодной лампы
LED smd B35 827 ЭРА, 7 Вт на микросхеме BP2831A

Поделился со мной знакомый, что купил пять лампочек как на фото ниже, и все они через месяц перестали работать. Три из них он успел выбросить, а две, по моей просьбе, принес для ремонта.


Лампочка работала, но вместо яркого света излучала мерцающий слабый свет с частотой несколько раз в секунду. Сразу предположил, что вспучился электролитический конденсатор, обычно если он выходит из строя, то лампа начинает излучать свет, как стробоскоп.

Светорассеивающее стекло снялось легко, приклеено небыло. Оно фиксировалось за счет прорези на его ободке и выступу в корпусе лампы.


Драйвер был закреплен с помощью двух паек к печатной плате со светодиодами, как в оной из выше описанных ламп.

Типовая схема драйвера на микросхеме BP2831A взятая с даташита приведена на фотографии. Плата драйвера была извлечена и проверены все простые радиоэлементы, оказались все исправны. Пришлось заняться проверкой светодиодов.

Светодиоды в лампе были установлены неизвестного типа с двумя кристаллами в корпусе и осмотр дефектов не выявил. Методом последовательного соединения между собой выводов каждого из светодиодов быстро определил неисправный и заменил его каплей припоя, как на фотографии.

Лампочка проработала неделю и опять попала в ремонт. Закоротил следующий светодиод. Через неделю пришлось закоротить очередной светодиод, и после четвертого лампочку выкинул, так как надоело ее ремонтировать.

Причина отказа лампочек подобной конструкции очевидна. Светодиоды перегреваются из-за недостаточной поверхности теплоотвода, и ресурс их снижается до сотен часов.

Почему допустимо замыкать выводы сгоревших светодиодов в LED лампах

Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки в заданных пределах, ток будет всегда постоянным и, следовательно, падение напряжения на каждом из светодиодов будет оставаться прежним.

Поэтому при уменьшении количества последовательно соединённых светодиодов в цепи будет пропорционально уменьшаться и напряжение на выходе драйвера.

Например, если к драйверу последовательно подключено 50 светодиодов, и на каждом из них падает напряжение величиной 3 В, то напряжение на выходе драйвера составлял 150 В, а если закоротить 5 из них, то напряжение снизится до 135 В, а величина тока не изменится.


Но коэффициент полезного действия (КПД) драйвера, собранного по такой схеме будет низкий и потери мощности, составят более 50%. Например, для LED лампочки MR-16-2835-F27 понадобится резистор номиналом 6,1 кОм мощностью 4 ватта. Получится, что драйвер на резисторе будет потреблять мощность, превышающую мощность потребления светодиодами и его разместить в маленький корпус LED лампы, из-за выделения большего количества тепла, будет недопустимо.

Но если нет другого способа отремонтировать светодиодную лампу и очень надо, то драйвер на резисторе можно разместить в отдельном корпусе, все равно потребляемая мощность такой LED лампочки будет в четыре раза меньше, чем лампы накаливания. При этом надо заметить, что чем больше будет в лампочке последовательно включенных светодиодов, тем выше будет КПД. При 80 последовательно соединенных светодиодов SMD3528 понадобится уже резистор номиналом 800 Ом мощностью всего 0,5 Вт. Емкость конденсатора С1 нужно будет увеличить до 4,7 µF.

Поиск неисправных светодиодов

После снятия защитного стекла появляется возможность проверки светодиодов, без отклеивания печатной платы. В первую очередь проводится внимательный осмотр каждого светодиода. Если обнаружена даже самая маленькая черная точка, не говоря уже о почернении всей поверхности LED, то он точно неисправен.

При осмотре внешнего вида светодиодов, нужно внимательно осмотреть и качество паек их выводов. В одной из ремонтируемых лампочек оказалось плохо припаянных сразу четыре светодиода.

На фотографии лампочка, у которой на четырех LED были очень маленькие черные точки. Я сразу пометил неисправные светодиоды крестами, чтобы их было хорошо видно.

Неисправные светодиоды могут и не иметь изменений внешнего вида. Поэтому необходимо каждый LED проверить мультиметром или стрелочным тестером , включенным в режим измерения сопротивления.

Встречаются светодиодные лампы, в которых установлены по внешнему виду стандартные светодиоды, в корпусе которых смонтировано сразу два последовательно включенных кристалла. Например, лампы серии ASD LED-A60. Для прозвонки таких светодиодов необходимо приложить к его выводам напряжение более 6 В, а любой мультиметр выдает не более 4 В. Поэтому проверку таких светодиодов можно выполнить только подав на них с источника питания напряжение более 6 (рекомендуется 9-12) В через резистор 1 кОм.

Светодиод проверяется, как и обычный диод, в одну сторону сопротивление должно быть равно десяткам мегаом, а если поменять щупы местами (при этом меняется полярность подачи напряжения на светодиод), то небольшим, при этом светодиод может тускло светиться.

При проверке и замене светодиодов лампу необходимо зафиксировать. Для этого можно использовать подходящего размера круглую банку.

Можно проверить исправность LED и без дополнительного источника постоянного тока. Но такой метод проверки возможен, если исправен драйвер лампочки. Для этого необходимо подать на цоколь LED лампочки питающее напряжение и выводы каждого светодиода последовательно закорачивать между собой перемычкой из провода или, например губками металлического пинцета.

Если вдруг все светодиоды, засветятся, значит, закороченный точно неисправен. Этот метод пригоден, если неисправен только один светодиод из всех в цепи. При таком способе проверки нужно учесть, что если драйвер не обеспечивает гальванической развязки с электросетью, как например, на приведенных выше схемах, то прикосновение рукой к пайкам LED небезопасно.

Если один или даже несколько светодиодов оказались неисправны и, заменить их нечем, то можно просто закоротить контактные площадки, к которым были припаяны светодиоды. Лампочка будет работать с таким же успехом, только несколько уменьшится световой поток.

Другие неисправности светодиодных ламп

Если проверка светодиодов показала их исправность, то значит, причина неработоспособности лампочки заключается в драйвере или в местах пайки токоподводящих проводников.

Например, в этой лампочке была обнаружена холодная пайка проводника, подающего питающее напряжение на печатную плату. Выделяемая из-за плохой пайки копоть даже осела на токопроводящие дорожки печатной платы. Копоть легко удалилась протиркой ветошью, смоченной в спирте. Провод был выпаян, зачищен, залужен и вновь запаян в плату. С ремонтом этой лампочки повезло.

Из десяти отказавших лампочек только у одной был неисправен драйвер, развалился диодных мостик. Ремонт драйвера заключался в замене диодного моста четырьмя диодами IN4007, рассчитанными на обратное напряжение 1000 В и ток 1 А.

Пайка SMD светодиодов

Для замены неисправного LED его необходимо выпаять, не повредив печатные проводники. С платы донора тоже нужно выпаять на замену светодиод без повреждений.

Выпаивать SMD светодиоды простым паяльником, не повредив их корпус, практически невозможно. Но если использовать специальное жало для паяльника или на стандартное жало надеть насадку , сделанную из медной проволоки, то задача легко решается.

Светодиод имеют полярность и при замене нужно правильно его установить на печатную плату. Обычно печатные проводники повторяют форму выводов на LED. Поэтому допустить ошибку можно только при невнимательности. Для запайки светодиода достаточно установить его на печатную плату и прогреть паяльником мощностью 10-15 Вт его торцы с контактными площадками.

Если светодиод сгорел на уголь, и печатная плата под ним обуглилась, то прежде чем устанавливать новый светодиод нужно обязательно очистить это место печатной платы от гари, так как она является проводником тока. При очистке можно обнаружить, что контактные площадки для пайки светодиода обгорели или отслоились.

В таком случае светодиод можно установить, припаяв его к соседним светодиодам, если печатные дорожки ведут к ним. Для этого можно взять отрезок тонкого провода, согнуть его вдвое или трое, в зависимости от расстояния между светодиодами, залудить и припаять к ним.

Ремонт светодиодной лампы серии "LL-CORN" (лампа-кукуруза)
E27 4,6 Вт 36x5050SMD

Устройство лампы, которая в народе называется лампа-кукуруза, изображенной на фотографии ниже отличается, от выше описанной лампы, поэтому и технология ремонта другая.


Конструкция ламп на LED SMD подобного типа очень удобна для ремонта, так как есть доступ для прозвонки светодиодов и их замены без разборки корпуса лампы. Правда, я лампочку все равно разобрал для интереса, чтобы изучить ее устройство.

Проверка светодиодов LED лампы-кукурузы не отличается от выше описанной технологии, но надо учесть, что в корпусе светодиода SMD5050 размещено сразу три светодиода, обычно включаемые параллельно (на желтом круге видны три темные точки кристаллов), и при проверке должны светиться все три.


Неисправный светодиод можно заменить новым или закоротить перемычкой. На надежность работы лампы это не повлияет, только незаметно для глаза, уменьшится немного световой поток.

Драйвер этой лампы собран по простейшей схеме, без развязывающего трансформатора, поэтому прикосновение к выводам светодиодов при включенной лампе недопустимо. Лампы такой конструкции недопустимо устанавливать в светильники, к которым могут добраться дети.

Если все светодиоды исправны, значит, неисправен драйвер, и чтобы до него добраться лампу придется разбирать.

Для этого нужно снять ободок со стороны, противоположной цоколю. Маленькой отверткой или лезвием ножа нужно, пробуя по кругу, найти слабое место, где ободок хуже всего приклеен. Если ободок поддался, то работая инструментом, как рычагом, ободок нетрудно отойдет по всему периметру.


Драйвер был собран по электрической схеме, как и у лампы MR-16, только С1 стоял емкостью 1 µF, а С2 - 4,7 µF. Благодаря тому, что провода, идущие от драйвера к цоколю лампы, были длинными, драйвер легко вынулся из корпуса лампы. После изучения его схемы, драйвер был вставлен обратно в корпус, а ободок приклеен на место прозрачным клеем «Момент». Отказавший светодиод заменен исправным.

Ремонт светодиодной лампы "LL-CORN" (лампа-кукуруза)
E27 12 Вт 80x5050SMD

При ремонте более мощной лампы, 12 Вт, такой же конструкции отказавших светодиодов не оказалось и чтобы добраться до драйверов, пришлось вскрывать лампу по выше описанной технологии.

Эта лампа преподнесла мне сюрприз. Провода, идущие от драйвера к цоколю, оказались короткими, и извлечь драйвер из корпуса лампы для ремонта было невозможно. Пришлось снимать цоколь.


Цоколь лампы был сделан из алюминия, закернен по окружности и держался крепко. Пришлось высверливать точки крепления сверлом 1,5 мм. После этого поддетый ножом цоколь легко снялся.

Но можно обойтись и без сверления цоколя, если острием ножа по окружности поддевать и немного отгибать его верхнюю кромку. Предварительно следует нанести метку на цоколе и корпусе, чтобы цоколь было удобно устанавливать на место. Для надежного закрепления цоколя после ремонта лампы, достаточно будет надеть его на корпус лампы таким образом, чтобы накерненные точки на цоколе попали на старые места. Далее продавить эти точки острым предметом.

Два провода были подсоединены к резьбе прижимом, а другие два запрессованные в центральный контакт цоколя. Пришлось эти провода перекусить.


Как и ожидалось, драйверов было два одинаковых, питающих по 43 диода. Они были закрыты термоусаживающейся трубкой и соединены вместе скотчем. Для того, чтобы драйвер можно было опять поместить в трубку, я обычно ее аккуратно разрезаю вдоль печатной платы со стороны установки деталей.


После ремонта драйвер окутывается трубкой, которая фиксируется пластмассовой стяжкой или заматывается несколькими витками нитки.


В электрической схеме драйвера этой лампы уже установлены элементы защиты, С1 для защиты от импульсных выбросав и R2, R3 для защиты от бросков тока. При проверке элементов сразу были обнаружены на обоих драйверах в обрыве резисторы R2. Похоже, что на светодиодную лампу было подано напряжение, превышающее допустимое. После замены резисторов, под рукой на 10 Ом не оказалось, и я установил на 5,1 Ом, лампа заработала.

Ремонт светодиодной лампы серии "LLB" LR-EW5N-5

Внешний вид лампочки этого типа внушает доверие. Алюминиевый корпус, качественное исполнение, красивый дизайн.

Конструкция лампочки такова, что разборка ее без применения значительных физических усилий невозможна. Так как ремонт любой светодиодной лампы начинается с проверки исправности светодиодов, то первое что пришлось сделать, это снять пластмассовое защитное стекло.

Стекло фиксировалось без клея на проточке, сделанной в радиаторе буртиком внутри него. Для снятия стекла нужно концом отвертки, которая пройдет между ребрами радиатора, опереться за торец радиатора и как рычагом поднять стекло вверх.

Проверка светодиодов тестером показала их исправность, следовательно, неисправен драйвер, и надо до него добраться. Плата из алюминия была прикручена четырьмя винтами, которые я открутил.

Но вопреки ожиданиям, за платой оказалась плоскость радиатора, смазанная теплопроводящей пастой. Плату пришлось вернуть на место и продолжить разбирать лампу со стороны цоколя.


В связи с тем, что пластмассовая часть, к которой крепился радиатор, держалась очень крепко, решил пойти проверенным путем, снять цоколь и через открывшееся отверстие извлечь драйвер для ремонта. Высверлил места кернения, но цоколь не снимался. Оказалось, он еще держался на пластмассе за счет резьбового соединения.


Пришлось отделять пластмассовый переходник от радиатора. Держался он, так же как и защитное стекло. Для этого был сделан запил ножовкой по металлу в месте соединения пластмассы с радиатором и с помощью поворота отвертки с широким лезвием, детали были отделены друг от друга.


После отпайки выводов от печатной платы светодиодов драйвер стал доступен для ремонта. Схема драйвера оказалась более сложной, чем у предыдущих лампочек, с разделительным трансформатором и микросхемой. Один из электролитических конденсаторов 400 V 4,7 µF был вздутый. Пришлось его заменить.


Проверка всех полупроводниковых элементов выявила неисправный диод Шоттки D4 (на фото внизу с лева). На плате стоял диод Шоттки SS110, заменил имеющимся аналогом 10 BQ100 (100 V, 1 А). Прямое сопротивление у диодов Шоттки в два раза меньше, чем у обыкновенных диодов. Светодиодная лампочка засветила. Такая же неисправность оказалась и у второй лампочки.

Ремонт светодиодной лампы серии "LLB" LR-EW5N-3

Эта светодиодная лампа по внешнему виду очень похожа на "LLB" LR-EW5N-5, но конструкция ее несколько отличается.

Если внимательно присмотреться, то видно, что на стыке между алюминиевым радиатором и сферическим стеклом, в отличие от LR-EW5N-5, имеется кольцо, в котором и закреплено стекло. Для снятия защитного стекла достаточно небольшой отверткой подцепить его в месте стыка с кольцом.

На алюминиевой печатной плате установлено три девяти кристальных сверх ярких LED. Плата прикручена к радиатору тремя винтами. Проверка светодиодов показала их исправность. Следовательно, нужно ремонтировать драйвер. Имея опыт ремонта похожей светодиодной лампы "LLB" LR-EW5N-5, я не стал откручивать винты, а отпаял токоподводящие провода, идущие от драйвера и продолжил разбирать лампу со стороны цоколя.


Пластмассовое соединительное кольцо цоколя с радиатором снялось с большим трудом. При этом часть его откололась. Как оказалось, оно было прикручено к радиатору тремя саморезами. Драйвер легко извлекся из корпуса лампы.


Саморезы, прикручивающие пластмассовое кольцо цоколя закрывает драйвер, и увидеть их сложно, но они находятся на одной оси с резьбой, к которой прикручена переходная часть радиатора. Поэтому тонкой крестообразной отверткой к ним можно добраться.


Драйвер оказался собран по трансформаторной схеме. Проверка всех элементов, кроме микросхемы, не выявила отказавших. Следовательно, неисправна микросхема, в Интернете даже упоминание о ее типе не нашел. Светодиодную лампочку отремонтировать не удалось, пригодится на запчасти. Зато изучил ее устройство.

Ремонт светодиодной лампы серии "LL" GU10-3W

Разобрать перегоревшую светодиодную лампочку GU10-3W с защитным стеклом оказалось, на первый взгляд, невозможно. Попытка извлечь стекло приводила к его надколу. При приложении больших усилий, стекло трескалось.

Кстати, в маркировке лампы буква G означает, что лампа имеет штыревой цоколь, буква U, что лампа относится к классу энергосберегающих лампочек, а цифра 10 – расстояние между штырями в миллиметрах.

Лампочки LED с цоколем GU10 имеют особые штыри и устанавливаются в патрон с поворотом. Благодаря расширяющимся штырям, LED лампа защемляется в патроне и надежно удерживается даже при тряске.

Для того чтобы разобрать эту LED лампочку пришлось в ее алюминиевом корпусе на уровне поверхности печатной платы сверлить отверстие диаметром 2,5 мм. Место сверления нужно выбрать таким образом, чтобы сверло при выходе не повредило светодиод. Если под рукой нет дрели, то отверстие можно проделать толстым шилом.

Далее в отверстие продевается маленькая отвертка и, действуя, как рычагом приподымается стекло. Снимал стекло у двух лампочек без проблем. Если проверка светодиодов тестером показала их исправность, то далее извлекается печатная плата.


После отделения платы от корпуса лампы, сразу стало очевидно, что как в одной, так и в другой лампе сгорели токоограничивающие резисторы. Калькулятор определил по полосам их номинал, 160 Ом. Так как резисторы сгорели в светодиодных лампочках разных партий, то очевидно, что их мощность, судя по размеру 0,25 Вт, не соответствует выделяемой мощности при работе драйвера при максимальной температуре окружающей среды.


Печатная плата драйвера была добротно залита силиконом, и я не стал ее отсоединять от платы со светодиодами. Обрезал выводы сгоревших резисторов у основания и к ним припаял более мощные резисторы, которые оказались под рукой. В одной лампе впаял резистор 150 Ом мощностью 1 Вт, во второй два параллельно 320 Ом мощностью 0,5 Вт.


Для того чтобы исключить случайное прикосновение вывода резистора, к которому подходит сетевое напряжение с металлическим корпусом лампы, он был заизолирован каплей термоклея. Он водостойкий, отличный изолятор. Его я часто применяю для герметизации, изоляции и закрепления электропроводов и других деталей.

Термоклей выпускается в виде стержней диаметром 7, 12, 15 и 24 мм разных цветов, от прозрачного до черного. Он плавится в зависимости от марки при температуре 80-150°, что позволяет его расплавлять с помощью электрического паяльника. Достаточно отрезать кусок стержня, разместить в нужном месте и нагреть. Термоклей приобретет консистенцию майского меда. После остывания становится опять твердым. При повторном нагреве опять становиться жидким.

После замены резисторов, работоспособность обеих лампочек восстановилась. Осталось только закрепить печатную плату и защитное стекло в корпусе лампы.

При ремонте светодиодных ламп для закрепления печатных плат и пластмассовых деталей я использовал жидкие гвозди «Монтаж» момент. Клей без запаха, хорошо прилипает к поверхностям любых материалов, после засыхания остается пластичным, имеет достаточную термостойкость.

Достаточно взять небольшое количество клея на конец отвертки и нанести на места соприкосновения деталей. Через 15 минут клей уже будет держать.

При приклейке печатной платы, чтобы не ждать, удерживая плату на месте, так как провода выталкивали ее, зафиксировал плату дополнительно в нескольких точках с помощью термоклея.

Светодиодная лампа начала мигать как стробоскоп

Пришлось ремонтировать пару светодиодных ламп с драйверами, собранными на микросхеме, неисправность которых заключалась в мигании света с частотой около одного герца, как в стробоскопе.

Один экземпляр светодиодной лампы начинал мигать сразу после включения в течении первых нескольких секунд и затем лампа начинала светить нормально. Со временем продолжительность мигания лампы после включения стала увеличиваться, и лампа стала мигать беспрерывно. Второй экземпляр светодиодной лампы стал мигать беспрерывно внезапно.


После разборки ламп оказалось, что в драйверах вышли из строя электролитические конденсаторы, установленные сразу после выпрямительных мостов. Определить неисправность было легко, так как корпуса конденсаторов были вздутые. Но даже если по внешнему виду конденсатор выглядит без внешних дефектов, то все равно ремонт светодиодной лампочки со стробоскопическим эффектом нужно начинать с его замены.

После замены электролитических конденсаторов исправными стробоскопический эффект исчез и лампы стали светить нормально.

Онлайн калькуляторы для определения номинала резисторов
по цветовой маркировке

При ремонте светодиодных ламп возникает необходимость в определении номинала резистора . По стандарту маркировка современных резисторов производиться путем нанесения на их корпуса цветных колец. На простые резисторы наносится 4 цветных кольца, а на резисторы повышенной точности – 5.