Исторические формы науки. Знания и познание (преднаука) в архаических культурах и ранних цивилизациях Концептуальный характер наук на древнем востоке

Вопросы

К экзамену кандидатского минимума по курсу «История и философия науки»

Составитель О.В. Коркунова, Ю.Н. Тундыков

Стр.
1. Знание и познание (преднаука) в архаических культурах и ранних цивилизациях…….
2. Преднаука и философия познания в античном мире (доклассический период)………...
3. Преднаука и философия познания в античном мире (классический период)…………...
4. Преднаука в период Эллинизма и Рима……………………………………………………
5. Преднаука и философия познания в Средние века………………………………………..
6. Эпоха Возрождения как канун становления классической науки……………………….
7. Мировоззренческие понятия пантеизма и деизма и их значение для становления научной картины мира (в философии Н. Кузанского, Б. Спинозы, Д. Бруно и других мыслителей и других французских просветителей 18 века)……………………………...
8. Философия познания Ф.Бэкона и ее значение для превращения преднауки в науку, становления научной картины мира………………………………………………………..
9. Философия познания Р.Декарта и ее значение для превращения преднауки в науку…..
10. Становление классической науки (17 век)…………………………………………………
11. Развитие естествознания в 17-19 веках…………………………………………………….
12. Натурфилософия как предшественник и антипод научного знания о природе. Предопределение натурфилософии (19 век)……………………………………………….
13. Достижения социально-гуманитарного знания в 17-19 веках……………………………
14. Философия познания И Канта и ее значения для развития науки 18-19 вв……………..
15. Система и метод Гегеля и их значение для развития науки 19 века……………………..
16. Становление неклассической науки (втор половина 19 – нач. 20 веков)………………..
17. Неклассическая и постнеклассическая наука в 20 веке…………………………………...
18. Становление Российской науки и русская философия……………………………………
19. Российская наука в конце 19 – начале 20 века…………………………………………….
20. Особенности профессионального труда в науке. Социальная ответственность ученого и инженера…………………………………………………………………………………...
21. Профессиональная этика ученого………………………………………………………….
22. Наука как познавательная деятельность…………………………………………………...
23. Наука как социальный институт……………………………………………………………
24. Наука как особая сфера культуры………………………………………………………….
25. Вклад позитивизма в становление философии науки…………………………………….
26. Проблема опыта и истины в философии науки начала 20 века (Мах, Авинариус, Пуанкаре)……………………………………………………………………………………..
27. Вклад неопозитивизма в развитии логики и методологии науки………………………...
28. Концепция философии науки Т.Куна………………………………………………………
29. Концепция философии науки К. Поппера…………………………………………………
30. Развитие философии науки постпозитивизмом (И. Локатос, П. Фейерабент, М. Полани)……………………………………………………………………………………….
31. Особенности научного знания. Наука и другие формы миропостижения (философия, искусство, религия)………………………………………………………………………….
32. Роль науки в образовании и формировании современного человека……………………
33. Структура эмпирического и теоретического знания……………………………………...
34. Эксперимент и наблюдение…………………………………………………………………
35. Гипотеза и теория……………………………………………………………………………
36. Идеалы и нормы науки. Мотивация научной деятельности……………………………...
37. Методы научного познания…………………………………………………………………
38. Проблема классификации наук……………………………………………………………..
39. Основные закономерности развития науки………………………………………………..
40. Исторические типы рациональности (классическая, неклассическая, постклассическая)……………………………………………………………………………
41. Саморазвивающиеся синергетические системы и стратегия научного поиска…………
42. Глобальный эволюционизм и современная научная картина мира………………………
43. Сциентизм и антисциентизм………………………………………………………………..
44. Проблема смысла и сущности техники…………………………………………………….
45. Роль техники в становлении классического математизированного и экспериментального естествознания……………………………………………………….
46. Проблема гуманизации и экологизации современной техники…………………………..
47. Научная картина как предпосылочное знание…………………………………………….
48. Гносеологические, логические и семантические основания науки. Языки науки………
49. Научные традиции и научные революции…………………………………………………
50. Философские проблемы социально-гуманитарных наук…………………………………
51. Наука и лженаука……………………………………………………………………………

Знание и познание (преднаука) в архаических культурах и ранних цивилизациях.


Человеческое познание возникло самим человеком. Животные опираются на инстинкт. Но человек добавляет к этому мышление и речь. Все истоки науки находятся в истоках человеческого восприятия мира. Знание о мире неотделимо от наблюдений о мире.

Типы знаний:

1 тип: нецеленаправленные;

2 тип: целенаправленные (любознательность, любопытство);

3 тип: в процессе материального произведения практики (мы преобразуем мир).

Формы некоторых орудий труда, украшений и т.д. появились на заре человечества, и изменились не значительно до наших дней. Процесс познания мира неотделим от человека.

Процесс познавания мира:

Неандертальцы – каменные орудия;

Мезолит (10-15тыс л.д.н.э.) – одомашнивание животных, культивирование растений;

Неолит (7-10тыс л.д.н.э.) – керамика, ткачество, первое разделение труда (сельское хозяйство отделилось от охоты и собирания);

Возросшая специализация способствовала разделению труда , появления первых металлических изделий, изделий из меди. Отделение торговли от сельского хозяйства – потребность в счете – математика .

Появились первые цивилизации, которые предполагают:

Развитый труд;

Наличие городов;

Частная собственность;

Социальное развитие.

Древняя Месопотамия . Это первая цивилизация, которая располагалась на территории Ирана. Вавилон просуществовал 15 столетий (новый способ записи речевой информации, графическое письмо (ИДЕОГРАФИЯ), до этого были рисунки, через 2000 лет изобрели алфавит, Вавилонские жрецы отличали звезды от планет, установили эклиптику, 12 созвездий, лунный календарь, солнечные часы, могли извлекать квадратный корень их чисел).

Древне-Египетская (солнечный день, 12 часов, 5 дней лишних);

Древне-Индийская (Земля имеет форму шара и вращается, пирамиды, Стоунхендж);

Древне-Киайская (анатомические знания).


Возникновение естествознания
Элементы естественных знаний, знаний в области естественных наук, накапливались постепенно в процессе практической деятельности человека и формировались большей частью исходя из потребностей этой практической жизни, не становясь самодостаточным предметом деятельности. Выделяться из практической деятельности ϶ᴛᴎ элементы начали в наиболее организованных обществах, сформировавших государственную и религиозную структуру и освоивших письменность: Шумер и Древний Вавилон, Древние Египет, Индия, Китай. Чтобы понять, почему одни моменты естествознания появляются ранее других, вспомним, области деятельности, знакомые человеку той эпохи:
- сельское хозяйство, включая земледелие и скотоводство;
- строительство, включая культовое;
- металлургия, керамика и прочие ремесла;
- военное дело, мореплавание, торговля;
- управление государством, обществом, политика;
- религия и магия.
Рассмотрим вопрос: развитие каких наук стимулируют ϶ᴛᴎ занятия?
1. Развитие сельского хозяйства требует развития соответствующей сельскохозяйственной техники.
При этом от развития последней до обобщений механики слишком долгий период, чтобы всерьез рассматривать генезис механики из, скажем, потребностей земледелия. Хотя практическая механика, несомненно, развивалась в это время. К примеру, можно проследить появление из примитивной древнейшей зернотерки, через зерновую мельницу (жернова) водяной мельницы (V-III вв. до н.э.) - первой машины в мировой истории.
2. Ирригационные работы в Древнем Вавилоне и Египте требовали знания практической гидравлики.


Управление разливом рек, орошение полей при помощи каналов, учет распределяемой воды развивает элементы математики. Πервые водоподъемные приспособления - ворот, на барабан которого был намотан канат, несущий сосуд для воды; «журавль» - древнейшие предки кранов и большинства подъемных приспособлений и машин.
3. Специфические климатические условия Египта и Вавилона, жесткое государственное регулирование производства диктовали необходимость разработки точного календаря, счета времени, а отсюда - астрономических познаний. Египтяне разработали календарь, состоящий из 12-ти месяцев по 30 дней и 5-ти дополнительных дней в году. Месяц был разделен на 3 десятидневки, сутки на 24 часа: 12 дневных часов и 12 ночных (величина часа была не постоянной, а менялась со временем года). Ботаника и биология еще долго не выделялись из сельскохозяйственной практики. Πервые начатки этих наук появились только у греков.
4. Строительство, особенно грандиозное государственное и культовое требовали, по крайней мере, эмпирических знаний строительной механики и статики, а также геометрии. Древний Восток был хорошо знаком с такими механическими орудиями как рычаг и клин. На сооружение пирамиды Хеопса пошло 23300000 каменных глыб, средний вес которых равен 2,5 тонны. Πри сооружении храмов, колоссальных статуй и обелисков вес отдельных глыб достигал десятков и даже сотен тонн. Такие глыбы доставлялись из каменоломен на специальных салазках. В каменоломнях для отрыва каменных глыб от породы служил клин. Πодъем тяжестей осуществлялся с помощью наклонных плоскостей. К примеру, наклонная дорога к пирамиде Хефрена имела подъем 45,8 м и длину 494,6 м. Следовательно, угол наклона к горизонту составлял 5,3 градуса, и выигрыш в силе при поднятии тяжести на эту высоту был значительным. Нужно сказать, что для облицовки и подгонки камней, а возможно и при подъеме их со ступеньки на ступеньку, применялись качалки. Для поднятия и горизонтального перемещения каменных глыб служил также рычаг.
К началу последнего тысячелетия до н.э. народам Средиземноморья были достаточно хорошо известны те пять простейших подъемных приспособлений, которые впоследствии получили название простых машин: рычаг, блок, ворот, клин, наклонная плоскость. При этом до нас не дошел ни один древнеегипетский или вавилонский текст с описанием действия подобных машин, результаты практического опыта, видимо, не подвергались теоретической обработке. Строительство больших и сложных сооружений диктовало необходимость знаний в области геометрии, вычислении площадей, объемов, которое впервые выделилось в теоретическом виде. Для развития строительной механики необходимо знание свойств материалов, материаловедение. Древний Восток хорошо знал, умел получать очень высокого качества кирпич (в том числе обожженный и глазурованный), черепицу, известь, цемент.
5. Β древности (еще до греков) было известно 7 металлов: золото, серебро, медь, олово, свинец, ртуть, железо, а также сплавы между ними: бронзы (медь с мышьяком, оловом или свинцом) и латуни (медь с цинком). Цинк и мышьяк использовали в виде соединений. Существовала и соответствующая техника для плавки металлов: печи, кузнечные мехи и древесный уголь как горючее, что позволяло достигнуть температуры 1500 0С для плавления железа. Разнообразие керамики, производимой древними мастерами, позволило, в частности, археологии в будущем стать почти точной наукой. В Египте варили стекло, причем разноцветное, с применением разнообразных пигментов-красителей. Широкой гамме пигментов и красок, применявшихся в различных областях древнего мастерства, позавидует современный колорист. Наблюдения над изменениями природных веществ в ремесленной практике, наверное, послужили основой для рассуждений о первооснове материи у греческих физиков. Некоторые механизмы, применяемые ремесленниками, чуть ли не до сей поры, изобретены в глубокой древности. К примеру, токарный станок (конечно, ручной, деревообрабатывающий), прялка.
6. Нет нужды долго распространяться о влиянии торговли, мореплавания, военного дела на процесс возникновения научных знаний. Отметим только, что даже простейшие виды оружия должны делаться с интуитивным знанием их механических свойств. В конструкции стрелы и метательного копья (дротика) уже заложено неявное понятие об устойчивости движения, а в булаве и боевом топоре - оценка значения силы удара. В изобретении пращи и лука со стрелами проявилось осознание зависимости между дальностью полета и силой броска. В целом, уровень развития техники в военном деле был значительно выше, чем в сельском хозяйстве, особенно в Греции и Риме. Мореплавание стимулировало развитие той же астрономии для координации во времени и пространстве, техники строительства судов, гидростатики и многого другого. Торговля способствовала распространению технических знаний. Кроме того, свойство рычага - основы любых весов было известно задолго до греческих механиков - статиков. Следует отметить, что в отличие от сельского хозяйства и даже ремесла, ϶ᴛᴎ области деятельности были привилегией свободных людей.
7. Управление государством требовало учета и распределения продуктов, платы, рабочего времени, особенно, в восточных обществах. Нужно сказать, что для этого были нужны хотя бы начатки арифметики. Иногда (Вавилон) государственные нужды требовали знаний астрономии. Πисьменность, сыгравшая важнейшую роль в становлении научных знаний - во многом продукт государства.
8. Взаимоотношения религии и зарождающихся наук предмет особого глубокого и отдельного исследования. В качестве примера укажем лишь, что связь между звездными небом и мифологией египтян очень тесная и прямая, а потому развитие астрономии и календаря диктовалось не только нуждами сельского хозяйства.
Постараемся просуммировать сведения о том, что было выделено на Древнем Востоке как теоретическое знание.

Один из подходов разработан В. С. Степиным: две стадии (где 1- характеризует зарождающуюся науку (преднаука) и 2 - наука в собственном смысле слова.), которые соответствуют двум различным методам построения знаний и двум формам прогнозирования результатов деятельности.

Тем самым науке как таковой предшествует доклассический этап (преднаука) , где зарождаются элементы (предпосылки) науки - это зачатки знаний на Древнем Востоке, в Греции и Риме, а средние века до 16-17 вв, явл исходным пунктом естествознания. Преднаука же изучает те вещи и способы их изменений, с которыми человек многократно сталкивается в своей практической деятельности и обыденном опыте. Деятель-ность мышления - идеализированная схема практических действий

Причины возникновения науки в 16-17 вв .:

Общественно-экономические (утверждение капитализма и острая потребность в росте его производительных сил),

Социальные (перелом в духовной культуре, подрыв господства религии) условий,

Необходим был опр уровень развития самого знания.

В общественной жизни стал формир-ся новый образ мира и стиль мышления, разрушивший предшествующую картину мироздания и приведший к оформлению к ориентацией на механистичность и количественные методы. Галилей впервые ввел в познание то, что стало характерной особенностью именно научного познания - мысленный эксперимент.

Характерные черты нового стиля мышления : отношение к природе как самодостаточному естественному, объекту; становление принципа строгой количественной оценки.

В это время резко возрастает интерес не только к частнонаучным знаниям, но и к общетеоретическим, методологическим, философским проблемам. В Новое время ускоренными темпами развивается процесс размежевания между философией и частными науками.

Процесс дифференциации знания идет по трем основным направлениям :

1. отделение науки от философии.

2. Выделение в рамках науки как целого отдельных частных наук - механики, астрономии, физики, химии, биологии и др.

3. Вычленение в целостном философском знании таких философских дисциплин, как онтология, философия природы, философия истории, гносеология, логика и др.
Классификация этапов развития науки:

1. Классическая наука (XVII-XIX вв.), исследуя свои объекты, стремилась при их описании и теоретическом объяснении устранить по возможности все, что относится к субъекту, средствам, приемам и операциям его деятельности. Имеет парадигму механику, ее картина мира строится на принципе жесткого (лапласовского) детерминизма, ей соответствует образ мироздания как часового механизма
2. Неклассическая наука (первая половина XX в.) Парадигма относительности, дискретности, квантования, вероятности, дополнительности.
3. Постнеклассичесая наука (вторая половина XX- начало XXI в.) учитывает включенность субъективной деятельности в «тело знания». Основные черты нового образа науки выражаются синергетикой, изучающей общие принципы процессов самоорганизации, протекающих в системах самой различной природы

Наука в античный период.

Предпосылкой возн н знаний многие исслед истории науки считают миф. Миф -это особый тип мышления. В мифе совмещены два аспекта: диахронический (рассказ о прошлом, о первопредках, о первопредметах в «начальном» сакрально-священном времени) и синхронический (объяснение настоящего, а иногда и будущего).
В античности и средние века в основном имело место философское познание мира. Формир зачатков н знаний и методов античности и средневековья связывают с тем культурным переворотом, который произошел в древней Греции при «великой колонизации». Древние греки пытаются описать и объяснить возн, развитие и строение мира в целом. Эти их представления получили название натурфилософских. Основная деятель-ность ученого состояла в созерцании и осмыслении созерцаемого.
Среди значимых натурфилософских идей античности представляют интерес атомистика и элементаризм . Решение космогонической проблемы, поставленной Парменидом, далее развитая. Левкиппом и Демокритом. Платон объединил учение об элементах и атомистическую концепцию строения вещества, утверждая, что четыре элемента - огонь, воздух, вода и земля - не являются простейшими составными частями вещей. Аристотель (384-322 гг. до н.э.) создал всеобъемлющую систему знаний о мире. Для объяснения процессов движения, изменения развития вводит четыре вида причин: материальные, формальные, действующие и целевые.
Осн чертой эллинистической культуры стал индивидуализм, вызванный неустойчивостью соц-полит ситуации, невозм для человека влиять на судьбу полиса, усилившейся миграцией населения, возросшей ролью правителя и бюрократии. Это отразилось как на основных ф системах эллинизма - стоицизме (Зенон), скептицизме, эпикуреизме, неоплатонизме, так и на некоторых натурфилософских идеях.
Т.О., в античности появляются такие системы знаний, которые можно представить как первые теор модели . Но отсутствие экспериментальной базы не дает возможности рождения подлинно теор естествознания и науки в целом.

Знания и познание (преднаука) в архаических культурах и ранних цивилизациях

Логика и философия

Знания и познание преднаука в архаических культурах и ранних цивилизациях Науке как таковой предшествует преднаука доклассический этап где зарождаются элементы предпосылки науки. Именно этот период чаще всего считают началом исходным пунктом естествознания и науки в целом как систематического исследования реальной действительности. Знания существовали в религиозномистической форме и поэтому были доступны только жрецам которые могут читать священные книги и как носители практических знаний иметь власть над людьми. Жрецы накапливают...

1. Знания и познание (преднаука) в архаических культурах и ранних цивилизациях

Науке как таковой предшествует преднаука (доклассический этап), где зарождаются элементы (предпосылки) науки. Здесь имеются в виду зачатки знаний на Древнем Востоке, в Греции и Риме, а также в средние века, вплоть до XVI-XVII столетий. Именно этот период чаще всего считают началом, исходным пунктом естествознания (и науки в целом) как систематического исследования реальной действительности.

В древнеегипетской цивилизации возник сложный аппарат государственной власти, тесно сращенный с сакральным аппаратом жрецов. Носителями знаний были жрецы, в зависимости от уровня посвящения обладавшие той или иной суммой знаний. Знания существовали в религиозно-мистической форме и поэтому были доступны только жрецам, которые могут читать священные книги и как носители практических знаний иметь власть над людьми.

Как правило, люди селились в долинах рек, где близко вода, но здесь и опасность - разливы рек. Поэтому возникает необходимость систематического наблюдения за явлениями природы, что способствовало открытию определенных связей между ними и привело к созданию календаря, открытию циклически повторяющихся затмений Солнца и т.д. Жрецы накапливают знания в области математики, химии, медицины, фармакологии, психологии, они хорошо владеют гипнозом. Искусное мумифицирование свидетельствует о том, что древние египтяне имели определенные достижения в области медицины, химии, хирургии, физики, ими была разработана иридодиагностика.

Так как любая хозяйственная деятельность была связана с вычислениями, то был накоплен большой массив знаний в области математики: вычисление площадей, подсчет произведенного продукта, расчет выплат, налогов, использовались пропорции, так как распределение благ велось пропорционально социальным и профессиональным рангам. Для практического употребления создавалось множество таблиц с готовыми решениями. Древние египтяне занимались только теми математическими операциями, которые были необходимы для их непосредственных хозяйственных нужд, но никогда они не занимались созданием теорий - одним из важнейших признаков научного знания.

Шумеры изобрели гончарный круг, колесо, бронзу, цветное стекло, установили, что год равен 365 дням, 6 часам, 15 минутам, 41 секунде (для справки: современное значение - 365 дней 5 часов, 48 минут, 46 секунд), ими была создана оригинальная концепция Me, содержащая мудрость шумерской цивилизации, большая часть текстов которой не расшифрована.

Специфика освоения мира шумерской и другими цивилизациями Древней Месопотамии обусловлена способом мышления, в корне отличающимся от европейского: нет рационального исследования мира, теоретического решения проблем, а чаще всего для объяснения явлений используются аналогии из жизни людей.

Предпосылкой возникновения научных знаний многие исследователи истории науки считают миф. В нем, как правило, происходит отождествление различных предметов, явлений, событий (Солнце = золото, вода = молоко = кровь). Для отождествления необходимо было овладеть операцией выделения "существенных" признаков, а также научиться сопоставлять различные предметы, явления по выделенным признакам, что в дальнейшем сыграло значительную роль в становлении знаний.

Существенные черты древневосточной преднауки .

Наиболее развитая в период дл 6 в. до н.э. в аграрном, реме с ленном, военном, торговом отнош е нии восточная цивилизация (Египет, Месопотамия, Индия, Китай) выработала определе н ные знания. Эти знания накапливались, хранились и передав а лись от поколения к поколению, что позволяло им оптимально организовать деятельность. Однако н а личие некоторого знания само по себе не создает науку. Ее определяет целенаправле н ная деятельность по в ы работке нового знания.

1. На Др.Востоке знания вырабатывались путем обобщений практического опыта и циркулировали в обществе по принципу наследственного профессионализма. Процессы изменения знаний происходили стихийно, отсутствовала критико-рефлективная деятельность по оценке знаний. Знания принимались на бездоказательной основе, знание функционировало как набор готовых рецептов, что вытекало из его практического характера.

2. Особенностью древневосточной науки является отсутствие фундаментальности. Наука представляет не деятельность по выработке рецептурно-технологических схем, рекомендаций, а самодостаточную деятельность по анализу, разработке теоретических вопросов – «познание ради познания». Древневосточная же наука ориентирована на решение прикладных задач. Даже астрономия, казалось бы, не практическое занятие, в Вавилоне функционировала как прикладное искусство, обслуживавшее либо культовую (времена жертвоприношений привязаны к периодичности небесных явлений – фазы Луны и т. п.), либо астрологическую (выявление благоприятных и неблагоприятных условий для текущей политики и т. д.) деятельность. В сравнение: в то время в Др.Греции астрономия понималась не как техника вычисления, а как теоретическая наука об устройстве Вселенной в целом.

3. Древневост. наука не была рациональной, что было обусловлено характером социально - политического устройства древневосточных стран. Антидемократизм в социально-политической жизни этих стран (страны Ближнего Востока – откровенная деспотия) отражался на их интеллектуальной жизни. Предпочтение отдавалось не рациональной аргументации и доказательству, а авторитету. Отсутствие предпосылок к обоснованию знания и принятые механизмы аккумулирования и трансляции знания приводили его к фетишизации (религиозному слепому поклонению). Отсутствие демократии, обусловленная этим жреческая монополия на науку определили ее нерациональный, догматический характер, превратив ее в разновидность полумистического, сакрального (священного, относящегося к религиозному) знания.

4. Решение случайных задач, носящих частный нетеоретический характер, лишало древневост. науку систематичности. Поскольку поиск был ориентирован на нахождение практических рецептов, не проводилось универсальных доказательств. А отсутствие доказательного рассмотрения предмета в общем виде лишало возможности вывести необходимую о нем информацию.

Следовательно, если исходить из того, что такие признаки как фундаментальность, доказательность, рациональность необходимы для спецификации науки как элемента надстройки, особого типа рациональности, то наука в этом понимании не сложилась на Др. Востоке. А исторический тип познавательной деятельности, который сложился на Др.Востоке соответствует донаучной стадии развития интеллекта и научным еще не является.


А также другие работы, которые могут Вас заинтересовать

62085. Урок по легкой атлетике 17.67 KB
Стойка ноги врозь правая рука вверх 1-2 наклон туловища влево 3-4 наклон туловища вправо 3 И. стойка ноги врозь 1 наклон вперед 2 И. 3 наклон вперед 4 И. ноги врозь наклоны туловища 1 наклон влево 2 И.
62087. Food and Health 32.19 KB
Today we are going to speak about food and our health. So we must decide what should we eat in order to be fit and healthy. (слайд)Today we have an unusual lesson, because we have quests “I know you perfectly well, but our quests don’t.
62088. Звуки (р) (р), обозначение их буквой «Р» 67.48 KB
Задачи урока: образовательные: познакомить с буквой Р р; учить выполнять звукобуквенный анализ слов; плавно читать по слогам с переходом на чтение целыми словами. развивающие: развивать наглядно-образное мышление посредством использования моделей звук слог слово...
62089. Основы конституционного строя Российской Федерации 25.53 KB
Цели урока: образовательные: организация совместной исследовательской деятельности учащихся для самостоятельного изучения ими основных функций органов государственной власти РФ; формирование представлений учащихся об основных функциях органов государственной власти РФ...
62090. Art/Painting 24.43 KB
Цели урока: Практические: обобщить и систематизировать знания по теме Аrt Pаinting закрепление умений в говорении по теме Аrt Pаinting развитие умений восприятия и понимания иноязычной речи на слух Развивающие: развитие коммуникативных навыков...
62091. Твои игрушки придумал художник 549.61 KB
Цель урока: Углубление знаний о работе с пластилином через лепку животного Задачи урока: Образовательные Воспитательные Развивающие формирование навыка работы с пластилином передача пропорций и конструкций тела лепка...
62092. Отрасли экономики. Классификация профессий 212.75 KB
Цели урока: Воспитательная: Воспитывать толерантность по отношению друг к другу; Воспитывать уважительное отношение к труду людей; Образовательная: Ознакомить учащихся с отраслями экономики и классификаций профессий...

Элементы естественных знаний, знаний в области естественных наук, накапливались постепенно в процессе практической деятельности человека и формировались большей частью исходя из потребностей этой практической жизни, не становясь самодостаточным предметом деятельности. Выделяться из практической деятельности эти элементы начали в наиболее организованных обществах, сформировавших государственную и религиозную структуру и освоивших письменность: Шумер и Древний Вавилон, Древние Египет, Индия, Китай. Чтобы понять, почему одни моменты естествознания появляются ранее других, вспомним, области деятельности, знакомые человеку той эпохи:

Сельское хозяйство, включая земледелие и скотоводство;

Строительство, включая культовое;

Металлургия, керамика и прочие ремесла;

Военное дело, мореплавание, торговля;

Управление государством, обществом, политика;

Религия и магия.

Рассмотрим вопрос: развитие каких наук стимулируют эти занятия?

1. Развитие сельского хозяйства требует развития соответствующей с/х техники. Однако от развития последней до обобщений механики слишком долгий период, чтобы всерьез рассматривать генезис механики из, скажем, потребностей земледелия. Хотя практическая механика, несомненно, развивалась в это время. Например, можно проследить появление из примитивной древнейшей зернотерки, через зерновую мельницу (жернова) водяной мельницы (V-III вв. до н.э.) – первой машины в мировой истории.

2. Ирригационные работы в Древнем Вавилоне и Египте требовали знания практической гидравлики. Управление разливом рек, орошение полей при помощи каналов, учет распределяемой воды развивает элементы математики. Первые водоподъемные приспособления – ворот, на барабан которого был намотан канат, несущий сосуд для воды; «журавль» – древнейшие предки кранов и большинства подъемных приспособлений и машин.

3. Специфические климатические условия Египта и Вавилона, жесткое государственное регулирование производства диктовали необходимость разработки точного календаря, счета времени, а отсюда – астрономических познаний. Египтяне разработали календарь, состоящий из 12-ти месяцев по 30 дней и 5-ти дополнительных дней в году. Месяц был разделен на 3 десятидневки, сутки на 24 часа: 12 дневных часов и 12 ночных (величина часа была не постоянной, а менялась со временем года). Ботаника и биология еще долго не выделялись из сельскохозяйственной практики. Первые начатки этих наук появились только у греков.

4. Строительство, особенно грандиозное государственное и культовое требовали, по крайней мере, эмпирических знаний строительной механики и статики, а также геометрии. Древний Восток был хорошо знаком с такими механическими орудиями как рычаг и клин. На сооружение пирамиды Хеопса пошло 23 300 000 каменных глыб, средний вес которых равен 2,5 тонны. При сооружении храмов, колоссальных статуй и обелисков вес отдельных глыб достигал десятков и даже сотен тонн. Такие глыбы доставлялись из каменоломен на специальных салазках. В каменоломнях для отрыва каменных глыб от породы служил клин. Подъем тяжестей осуществлялся с помощью наклонных плоскостей. Например, наклонная дорога к пирамиде Хефрена имела подъем 45,8 м и длину 494,6 м. Следовательно, угол наклона к горизонту составлял 5,3 0 , и выигрыш в силе при поднятии тяжести на эту высоту был значительным. Для облицовки и пригонки камней, а возможно и при подъеме их со ступеньки на ступеньку, применялись качалки. Для поднятия и горизонтального перемещения каменных глыб служил также рычаг.

К началу последнего тысячелетия до н.э. народам Средиземноморья были достаточно хорошо известны те пять простейших подъемных приспособлений, которые впоследствии получили название простых машин: рычаг, блок, ворот, клин, наклонная плоскость. Однако до нас не дошел ни один древнеегипетский или вавилонский текст с описанием действия подобных машин, результаты практического опыта, видимо, не подвергались теоретической обработке. Строительство больших и сложных сооружений диктовало необходимость знаний в области геометрии, вычислении площадей, объемов, которое впервые выделилось в теоретическом виде. Для развития строительной механики необходимо знание свойств материалов, материаловедение. Древний Восток хорошо знал, умел получать очень высокого качества кирпич (в том числе обожженный и глазурованный), черепицу, известь, цемент.

5. В древности (еще до греков) было известно 7 металлов: золото, серебро, медь, олово, свинец, ртуть, железо, а также сплавы между ними: бронзы (медь с мышьяком, оловом или свинцом) и латуни (медь с цинком). Цинк и мышьяк использовались в виде соединений. Существовала и соответствующая техника для плавки металлов: печи, кузнечные мехи и древесный уголь как горючее, что позволяло достигнуть температуры 1500 0С для плавления железа. Разнообразие керамики, производимой древними мастерами, позволило, в частности, археологии в будущем стать почти точной наукой. В Египте варили стекло, причем разноцветное, с применением разнообразных пигментов-красителей. Широкой гамме пигментов и красок, применявшихся в различных областях древнего мастерства, позавидует современный колорист. Наблюдения над изменениями природных веществ в ремесленной практике, наверное, послужили основой для рассуждений о первооснове материи у греческих физиков. Некоторые механизмы, применяемые ремесленниками, чуть ли не до сей поры, изобретены в глубокой древности. Например, токарный станок (конечно, ручной, деревообрабатывающий), прялка.

6. Нет нужды долго распространяться о влиянии торговли, мореплавания, военного дела на процесс возникновения научных знаний. Отметим только, что даже простейшие виды оружия должны делаться с интуитивным знанием их механических свойств. В конструкции стрелы и метательного копья (дротика) уже заложено неявное понятие об устойчивости движения, а в булаве и боевом топоре – оценка значения силы удара. В изобретении пращи и лука со стрелами проявилось осознание зависимости между дальностью полета и силой броска. В целом, уровень развития техники в военном деле был значительно выше, чем в сельском хозяйстве, особенно в Греции и Риме. Мореплавание стимулировало развитие той же астрономии для координации во времени и пространстве, техники строительства судов, гидростатики и многого другого. Торговля способствовала распространению технических знаний. Кроме того, свойство рычага – основы любых весов было известно задолго до греческих механиков-статиков. Следует отметить, что в отличие от сельского хозяйства и даже ремесла, эти области деятельности были привилегией свободных людей.

7. Управление государством требовало учета и распределения продуктов, платы, рабочего времени, особенно, в восточных обществах. Для этого были нужны хотя бы начатки арифметики. Иногда (Вавилон) государственные нужды требовали знаний астрономии. Письменность, сыгравшая важнейшую роль в становлении научных знаний – во многом продукт государства.

8. Взаимоотношения религии и зарождающихся наук предмет особого глубокого и отдельного исследования. В качестве примера укажем лишь, что связь между звездными небом и мифологией египтян очень тесная и прямая, а потому развитие астрономии и календаря диктовалось не только нуждами сельского хозяйства. В дальнейшем, в контексте материала лекций, мы будем обращать внимание на эти связи.

Постараемся просуммировать сведения о том, что было выделено на Древнем Востоке как теоретическое знание.

Математика.

Известны египетские источники II-го тысячелетия до н.э. математического содержания: папирус Ринда (1680 г. до н.э., Британский музей) и Московский папирус. Они содержат решение отдельных задач, встречающихся в практике, математические вычисления, вычисления площадей и объемов. В Московском папирусе дана формула для вычисления объема усеченной пирамиды. Площадь круга египтяне вычисляли, возводя в квадрат 8/9 диаметра, что дает для числа пи остаточно хорошее приближение – 3,16. Несмотря на существование всех предпосылок Нейгебауэр /1/ отмечает достаточно низкий уровень теоретической математики в древнем Египте. Это объясняется следующим: “Даже в наиболее развитых экономических структурах древности потребность в математике не выходила за пределы элементарной домашней арифметики, которую ни один математик не назовет математикой. Требования же к математике со стороны технических проблем таковы, что средств древней математики было недостаточно для каких бы то ни было практических приложений”.

Шумеро-вавилонская математика была на голову выше египетской. Тексты, на которых основаны наши сведения о ней относятся к 2-м резко ограниченным и далеко отстоящим друг от друга периодам: большая часть – ко времени древневавилонской династии Хаммурапи 1800 – 1600 гг. до н.э., меньшая часть – к эпохе Селевкидов 300 – 0 гг. до н. э. Содержание текстов отличается мало, появляется лишь знак “0”. Невозможно проследить развитие математических знаний, все появляется сразу, без эволюции. Существует две группы текстов: большая – тексты таблиц арифметических действий, дробей и т.п., в том числе ученические, и малочисленная, содержащая тексты задач (около 100 из найденных 500 000 табличек).

Вавилоняне знали теорему Пифагора, знали очень точно значение главного иррационального числа — корня из 2, вычисляли квадраты и квадратные корни, кубы и кубические корни, умели решать системы уравнений и квадратные уравнения. Вавилонская математика носит алгебраический характер. Так же как для нашей алгебры ее интересует только алгебраические соотношения, геометрическая терминология не употребляется.

Однако и для египетской и для вавилонской математики характерно полное отсутствие теоретических изысканий методов счета. Нет попытки доказательства. Вавилонские таблички с задачами делятся на 2 группы: “задачники” и “решебники”. В последних из них решение задачи иногда завершается фразой: “такова процедура”. Классификация задач по типам была той высшей ступенью развития обобщения, до которой сумела подняться мысль математиков Древнего Востока. Видимо, правила находились эмпирическим путем, путем многократных проб и ошибок.

При этом математика носила сугубо утилитарный характер. С помощью арифметики египетские писцы решали задачи о расчете заработной платы, о хлебе, о пиве для рабочих и т.п. Нет еще четкого различия между геометрией и арифметикой. Геометрия является лишь одним из многих объектов практической жизни, к которым можно применить арифметические методы. В этом отношении характерны специальные тексты, предназначенные для писцов, занимавшихся решением математических задач. Писцы должны были знать все численные коэффициенты, нужные им для вычислений. В списках коэффициентов содержатся коэффициенты для “кирпичей”, для “стен”, для “треугольника”, для “сегмента круга”, далее для “меди, серебра, золота”, для “грузового судна”, “ячменя”, для “диагонали”, “резки тростника” и т.д./2/.

Как считает Нейгебауэр, даже вавилонская математика не перешагнула порога донаучного мышления. Он, впрочем, связывает этот вывод не с отсутствием доказательств, а с неосознанностью вавилонскими математиками иррациональности корня из 2.

Астрономия.

Египетская астрономия на протяжении всей своей истории находилась на исключительно незрелом уровне /1/. Судя по всему, никакой иной астрономии кроме наблюдений за звездами для составления календаря в Египте не было. В египетских текстах не нашлось ни одной записи астрономических наблюдений. Астрономия применялась почти исключительно для службы времени и регулирования строгого расписания ритуальных обрядов. Египетская астрономическая терминология оставила следы в астрологии.

Ассиро-вавилонская астрономия вела систематические наблюдения с эпохи Набонассара (747 г до н.э.). За период “доисторический” 1800 – 400 гг. до н.э. в Вавилоне разделили небосвод на 12 знаков Зодиака по 300 каждый, как стандартную шкалу для описания движения Солнца и планет, разработали фиксированный лунно-солнечный календарь. После ассирийского периода становится заметен поворот к математическому описанию астрономических событий. Однако наиболее продуктивным был достаточно поздний период 300 – 0 гг. Этот период снабдил нас текстами, основанными на последовательной математической теории движения Луны и планет.

Главной целью месопотамской астрономии было правильное предсказание видимого положения небесных тел: Луны, Солнца и планет. Достаточно развитая астрономия Вавилона объясняется обычно таким важным ее применением как государственная астрология (астрология древности не имела личностного характера). Ее задачей было предсказание благоприятного расположения звезд для принятия важных государственных решений. Таким образом, несмотря на нематериалистическое применение (политика, религия) астрономия на Древнем Востоке также как и математика носила сугубо утилитарный, а также догматический, бездоказательный характер. В Вавилоне ни одному наблюдателю не пришла в голову мысль: “А соответствует ли видимое движение светил их действительному движению и расположению?”. Однако среди астрономов, работавших уже в эллинистическое время, был известен Селевк Халдеянин, который, в частности, отстаивал гелиоцентрическую модель мира Аристарха Самосского.