Признаки аварийного состояния. Аварийное состояние железобетонных конструкций

К сожалению, сегодня многие владельцы кирпичных домов (имеются в виду недобросовестные эксплуатирующие компании и учреждения) не уделяют должного внимания вопросу необходимости проведения обязательных плановых осмотров и ремонтов несущих стен своих зданий, несмотря на то, что их периодичность и объем четко регламентированы в действующих на территории РФ нормативных документах. Зачастую тревогу начинают бить только после обрушения конструкций. Происходит так либо из-за низкой квалификации кадров, либо тупо в целях экономии средств на проведении периодических ремонтов. Однако экономия эта в большинстве случаев заканчивается перерасходом средств.

Ниже наглядно продемонстрированы характерные дефекты и повреждения несущих каменных стен зданий, свидетельствующие об их перегрузке и начавшемся разрушении. Наличие представленных на фото дефектов говорит о том, что стены требуют незамедлительного ремонта и усиления с предварительным проведением (в некоторых случаях) мероприятий по временному креплению аварийных участков стен с целью предотвращения их внезапного обрушения.

Фото №1. Разрушение и размораживание кладки наружной стены на глубину более 40% ее толщины. Возникает угроза внезапного обрушения.


Фото №2. Крупная сквозная вертикально ориентированная трещина раскрытием 1-3 см, идущая вверх от цоколя почти по всей высоте стены. Наблюдается вертикальный “разрыв” стен, сопровождающийся расслоением кладки по вертикали на отдельные самостоятельно работающие столбики.


Фото №3. Массовые прогрессирующие сквозные трещины между оконными проемами 2-го и 3-го этажей. Трещины «падают» вниз, раскрытие – «вверх». Наблюдается смещение горизонтальных рядов и расслоение кладки. Ярко выраженные признаки протекающего разрушения несущих стен здания: кладка на данном участке не работает как единая конструкция, она разделена на множество самостоятельно работающих участков, каждый из которых может обрушиться в любой момент. Восстановить данный участок стены можно только путем его перекладки с предварительным устройством временных креплений.


Фото №4. Тот же дом, что и на фото №3. Такие трещины еще можно отремонтировать. Если этого не сделать, очень скоро на данном участке стен будет картина, аналогичная той, что представлена на фото выше.


Фото №5. При таких трещинах (хотя «это» уже трудно назвать трещиной) в любой момент может произойти жуткая авария. Причем сначала скорей всего обрушатся перекрытия. В данном случае причиной образования трещин однозначно являются сверхнормативные деформации оснований и фундаментов. В правой части фото видны следы ранее проводившегося ремонта, в ходе которого была предпринята попытка избавить дом от трещин путем стягивания дефектных простенков металлическими накладками. На что надеялись организаторы этого ремонта не понятно. Ведь во всех нормах по техническому обследованию и содержанию зданий ясно сказано, что к ремонту и усилению каменных стен, поврежденных трещинами, необходимо приступать только после устранения причин их появления. В данном случае таковыми однозначно являются осадки или деформации системы «основание-фундамент».

Фото №6. Крупная сквозная трещина раскрытием 2-4 см на всю высоту стены, сопровождающаяся расслоением кладки по вертикали на отдельные самостоятельно работающие столбики. В зоне расположения трещины отмечено заметное выпучивание кладки и отклонение стен от вертикали, что свидетельствуют о перегрузке и начавшемся разрушении конструкций. Такую стену еще можно «вылечить», если начать это делать незамедлительно.


Фото №7. Крупная (сквозная) вертикально ориентированная трещина раскрытием до 6 см, переходящая со стены на фундамент. Причина трещинообразования все та же — осадки фундаментов.

Ну вот пожалуй и все. Для того, чтобы предотвратить образование выше представленных дефектов и повреждений — необходимо при появлении на стенах первых трещин сразу же обратиться к экспертам.

Транскрипт

2 Гроздов В. Т. Признаки аварийного состояния несущих конструкций зданий и сооружений. Предисловие Общие положения по оценке аварийности строительных конструкций Признаки аварийного состояния грунтового основания Признаки аварийного состояния фундаментов Признаки аварийного состояния железобетонных конструкций Признаки аварийного состояния каменных конструкций Признаки аварийного состояния конструкций крупнопанельных зданий Признаки аварийного состояния стальных конструкций Признаки аварийного состояния деревянных конструкций Заключение

3 УДК Гроздов В. Т. Признаки аварийного состояния несущих конструкций зданий и сооружений. СПб, Издательский Дом KN+, с, 17 рис., 1 табл. Редакционная коллегия Д. В. Берников, А. Н. Летчфорд, И. П. Яковенко Рассмотрены признаки, по которым можно определить, что состояние конструкций является аварийным. Сформулированы термин «авария» и связанные с ним понятия «аварийное состояние» и «предаварийное состояние». Отмечена важность знания инженерно-техническим персоналом строительных и эксплуатационных органов признаков аварийного состояния конструкций при реконструкции и капитальном ремонте зданий и сооружений. Книга может быть полезна для лиц, производящих техническое обследование строительных конструкций и надзор за строительством и эксплуатацией зданий и сооружений. Рецензенты В. М. Хомич кандидат технических наук, профессор (БИТУ), С. А. Платонов член-корреспондент МАНЭБ, кандидат технических наук, доцент (Управление ГАСН Санкт-Петербурга) ISBN В. Т. Гроздов,

if ($this->show_pages_images && $page_num doc["images_node_id"]) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 Предисловие Аварии строительных конструкций зданий и сооружений наносят значительный экономический ущерб и часто сопровождаются ранением и гибелью людей. Происходят аварии строительных конструкций обычно из-за совокупности причин: ошибок при проектировании, низкого качества материалов, используемых для несущих конструкций, нарушения технологии изготовления и монтажа строительных конструкций, несоблюдения правил эксплуатации зданий и сооружений. Аварии строительных конструкций редко происходят внезапно. Обычно можно наблюдать ряд предвестников аварии. Если своевременно заметить признаки приближающейся аварии, то можно вовремя принять профилактические меры: вывести людей из опасной зоны, произвести разгрузку аварийной конструкции, установить временные крепления и т. п. Поэтому так важно инженерно-техническому персоналу строительных и эксплуатационных организаций знать признаки аварийного состояния конструкций. Этому вопросу посвящена настоящая работа. 3

5 1. Общие положения по оценке аварийности строительных конструкций Термин «авария» и связанные с ним понятия «аварийное состояние», «предаварийное состояние» не имеют твердых общепринятых толкований. В данной работе под аварией строительных конструкций здания или сооружения подразумевается обрушение строительной конструкции или всего здания или сооружения в целом, а также получение ими таких деформаций, которые делают невозможной их эксплуатацию. Под аварийным состоянием подразумевается такое состояние конструкции здания или сооружения, при котором с большой степенью вероятности в ближайшее время можно ожидать его аварию. Предаварийным состоянием будем называть такое состояние конструкции, когда в случае продолжения неблагоприятных воздействий (неравномерная осадка фундамента, перепады температуры, агрессивность среды и т. п.) может произойти авария конструкции. Авария строительных конструкций возможна из-за наличия в них скрытых дефектов, в результате хрупкой работы конструкции, когда разрушение происходит без предварительных сильных деформаций. В этом случае установить факт наличия аварийного состояния конструкции очень трудно. Однако в большинстве случаев аварии конструкции предшествуют развитие больших деформаций, появление и раскрытие трещин и другие видимые признаки аварийного состояния. Целью настоящей работы является описание признаков, по которым можно определить, что состояние конструкции является аварийным Наряду с визуальным и визуально-инструментальным обследованием для установления аварийности конструкции обычно производят поверочные расчеты конструкции. При поверочных расчетах об аварийном состоянии конструкции 4

6 судят по степени превышения фактической несущей способности конструкции с учетом выявленных в ней дефектов над расчетной. В существующих нормах проектирования принято следующее положение: если какое-либо сечение конструкции достигло первой группы предельных состояний, то это предельное состояние наступает и во всей конструкции. В отношении аварийного состояния это справедливо для статически определяемых систем. В статически неопределяемых системах достижение в каком-либо одном сечении предельного состояния обычно не связано с обрушением конструкции. Это также должно быть учтено при решении вопроса о признании состояния конструкции аварийным. Анализ результатов обследования и поверочных расчетов позволяет дать достоверный ответ на вопрос, является ли состояние конструкции аварийным. При этом можно встретить следующие случаи: 1. обследование конструкций выявляет признаки, по которым можно судить, что конструкция находится в аварийном состоянии; то же подтверждают и поверочные расчеты; 2. обследование выявляет признаки аварийного состояния конструкции, но поверочные расчеты это не подтверждают; 3. результаты поверочных расчетов говорят о наличии аварийного состояния конструкции, а обследование признаков такого состояния не обнаруживает. В первом случае, бесспорно, следует считать, что имеет место аварийное состояние конструкции. Во втором случае следует проанализировать поверочные расчеты, а именно: учтено ли при их выполнении влияние выявленных дефектов строительных конструкций, правильно ли принята расчетная схема. Если при поверочных расчетах ошибок не сделано, то не имеется достаточных оснований считать состояние конструкций аварийным. В зависимости от вида конструкции и вы- 5

7 явленных дефектов в ряде случаев можно признать такое состояние конструкций предаварийным. В третьем случае нужно еще раз обследовать конструкцию, и если при этом не будет выявлено признаков аварийности, то не появится и оснований для утверждения об аварийном состоянии конструкции. Очень часто встречаются случаи, когда разрушающая нагрузка значительно превосходит несущую способность конструкции, подсчитанную по действующим нормам. Следует отметить, что правильность вывода об аварийном состоянии конструкции в значительной степени зависит от квалификации лица, делающего такое заключение. В ряде пособий, инструкций по обследованию строительных конструкций рекомендуется при снижении несущей способности конструкции более чем на 50% считать такое состояние конструкций аварийным или даже говорить об их полном разрушении. По этому поводу следует заметить, что аварийное состояние зависит не только от несущей способности конструкции (степени снижения предусмотренной проектом несущей способности), но и от усилий, вызванных внешним воздействием. Что касается обрушения конструкции, то оно может произойти и при меньшем снижении ее несущей способности. Если конструкция обрушилась, значит она полностью исчерпала свою фактическую несущую способность. 6

8 2. Признаки аварийного состояния грунтового основания Аварийным состоянием грунтового основания является такое его состояние, когда конструкции здания или сооружения, опирающиеся на это основание, находятся в аварийном состоянии по причине неудовлетворительной работы основания. Следовательно, об аварийности грунтового основания судят по состоянию конструкций, опирающихся на него. Нормы проектирования оснований зданий и сооружений ограничивают относительную разность осадок, среднюю и максимальную осадку фундаментов. При превышении предельных значений этих деформаций в конструкциях, опирающихся на основание, следует ожидать появления трещин. Однако не всегда при этом наступает аварийное состояние конструкций зданий и сооружений. Во многих случаях происходит лишь нарушение нормальных условий эксплуатации. Естественное основание, если исключить стихийные бедствия (землетрясение, оползни), может прийти в аварийное состояние в случаях, когда: - при проектировании здания или сооружения неправильно оценены прочностные и деформативные свойства грунтов основания; - нарушена технология котлованных работ; - допущено замораживание пучинистых грунтов; - нарушены правила эксплуатации зданий и сооружений. В качестве примера, когда нарушение естественной структуры грунтового основания привело к аварийному состоянию части надземных конструкций, можно привести возведение жилого пятиэтажного крупнопанельного дома в Ленинградской области. При отрывке котлована была повреждена водопроводная магистральная труба, и часть котлована, отрытого в суглинке, долгое время была залита водой, что привело к сильному переувлажнению грунтов. После возве- 7

9 дения здания произошло выпирание грунтов из-под подошвы фундаментов с разрушением пола подвала. Три секции дома, построенные на разжиженном грунте, просели и оторвались от двух ранее возведенных секций. Ширина трещин вверху здания достигла 4 см (рис. 1). Армированный пояс, предусмотренный проектом в связи с неоднородностью основания, при этом разорвался. В целом это здание нельзя было признать аварийным, так как деформации основания стабилизировались и обрушения здания не произошло. Аварийным в этом случае можно считать состояние стеновых панелей в зоне трещин, так как были нарушены связи панелей друг с другом и появились трещины в простенках. Рис.1. Схема деформации крупнопанельного жилого дома при сильной неравномерной деформации грунтового основания в результате его замачивания: 1 скальный грунт; 2 суглинок; 3 поврежденная водопроводная труба; 4 трещина. Примером достижения аварийного состояния надземных конструкций в результате промораживания пучинистых грунтов могут служить деформации надземной части двухэтажного кирпичного жилого дома в период строительства в Пушкине. Строительство дома велось в зимний период. Окна подвала не были остеклены. Засыпанный в подвал керамзитовый гравий прикрыл основания фундаментов у наружных стен Внутренние продольные стены имели фундамент, заглубленный относительно пола подвала всего на 50 см. Грунт 8

10 под этими стенами промерз, произошло его пучение. В результате дом раскололся вдоль на две части. Ширина трещины вверху торцевых стен достигла 8 10 см. В данном случае дом в целом не находился в аварийном состоянии. Только состояние продольных внутренних стен под перемычками можно было считать аварийным, так как при дальнейшем развитии деформаций пучения появлялась возможность обрушения перемычек и перекрытий, опертых на них. После восстановления в летнее время жесткости стен путем установки тяжей и заделки трещин, а также утепления подвала к следующей зиме следов последствий морозного пучения основания не осталось. Если бы здание осталось с не утепленным к следующей зиме подвалом, возникла бы реальная опасность обрушения участков стен. При реконструкции здания часто устраивают эксплуатируемые технические подвалы вместо существующих ранее полупроходных подполий. При этом обычно углубляют подвал так, что расстояние между подошвой фундамента и поверхностью пола подвала составляет менее 50 см, а иногда подошва оказывается даже выше пола подвала. В последнем случае всегда наступает аварийное состояние грунтового основания. Если отметка пола подвала приближается к отметке подошвы фундамента на расстояние менее 50 см, то необходимо сделать расчет основания по несущей способности (по первой группе предельных состояний), т. е. проверить основание на возможность выпирания грунтов из-под подошвы фундаментов. 9

11 3. Признаки аварийного состояния фундаментов Аварийное состояние фундаментов наступает из-за неудовлетворительной работы грунтового основания или из-за недостаточной прочности тела фундамента. При неудовлетворительной работе грунтового основания в фундаменте образуются сквозные трещины, они обычно сильно раскрыты, редко расположены, пересекают фундамент по всей высоте и заходят в стены. Эти трещины не всегда приводят к аварийному состоянию надземных конструкций. Трещины вызывают перераспределение усилий по длине фундаментов, что может привести к перегрузке отдельных участков фундаментов и их разрушению. Это обычно сопровождается и местными разрушениями тела фундамента у перемычек над проемами. В местах перегрузки образуются слабо раскрытые часто расположенные вертикальные трещины и наблюдается вертикальное расслоение тела фундамента Последнее определяется при простукивании вертикальных поверхностей фундаментов. В местах расслоения звук при простукивании глухой. Такое состояние участков фундаментов следует считать аварийным. При недостаточной прочности тела фундаментов в них также появляются часто расположенные слабо раскрытые трещины и наблюдается вертикальное расслоение. Это аварийное состояние. Появление трещин в стенках фундаментов стаканного типа под отдельные колонны, отсутствие должного омоноличивания стыка колонны с фундаментом следует признать аварийным состоянием фундамента, так как в этом случае не обеспечивается предусмотренная проектом заделка колонны в фундаменте, что приводит к увеличению усилий в отдельных элементах каркаса. В практике обследования у автора встретился случай, когда в полностью смонтированном двухэтажном каркасном здании заделка колонн в фундамент осуществлялась только с помощью временных деревянных 10

12 клиньев, без бетона омоноличивания. При реконструкции здания, когда производят углубление подвалов, не всегда обращают внимание на конструкцию фундаментов. В домах постройки прошлых веков часто нижняя часть фундамента выполнялась из камней округлой формы в распор со стенками траншеи без применения связующего раствора. Углублять пол при этом ниже верха такой кладки недопустимо. При реконструкции двухэтажного дома в Ленинградской области, имевшего подобный фундамент, вместо полупроходного подполья решили сделать эксплуатируемый подвал. При этом на большую высоту обнажили кладку из камней округлой формы. Камни начали выпадать из кладки фундамента. Стены, опирающиеся на этот фундамент, получили большие деформации, перекрытия просели, перегородки упали. Вовремя не были приняты меры для укрепления стен и фундаментов, участки стен начали обрушаться, и здание пришлось разобрать полностью. В данном случае первый же вывалившийся из фундамента камень был достаточно достоверным признаком аварийного состояния фундамента. От момента вывала первых камней до обрушения стен прошло несколько лет. 4. Признаки аварийного состояния железобетонных конструкций В соответствии с положением норм проектирования железобетонных конструкций предельное состояние по прочности наступает в сечении сжатых, сжатоизогнутых и изгибаемых железобетонных элементов тогда, когда деформации в наиболее сжатых волокнах достигают предельных значений. Это считается разрушением сечения элемента. В полностью растянутых сечениях предельное состояние наступает тогда, когда напряжение в арматуре достигает расчетных сопротивлений арматуры растяжению. В статически определяемых изгибаемых, внецентренно сжатых и внецентренно растянутых элементах при больших 11

13 эксцентриситетах достижение напряжений в растянутой арматуре значений расчетных сопротивлений (физического или условного предела текучести) неминуемо приведет к разрушению сечения элемента при небольшом увеличении нагрузки. В статически неопределяемых элементах в этом случае произойдет образование пластического шарнира, что вызовет перераспределение усилий между опорными и пролетными сечениями элемента. Отсюда можно сделать вывод, что появление текучести в растянутой арматуре статически определяемых элементов является аварийным состоянием (рис. 2). В статически неопределяемых конструкциях предельное состояние наступает тогда, когда начнет разрушаться сжатая зона бетона (рис. 3). О достижении растянутой арматурой предела текучести можно судить по ширине раскрытия трещин на уровне арматуры. 12

14 Рис. 2. Схема трещин в статически определяемом изгибаемом железобетонном элементе: 1 нормальная трещина, в которой арматура достигла предела текучести; 2 наклонная трещина; 3 продольная трещина в сжатой зоне элемента. Рис. 3. Схема трещин в растянутой и сжатой зонах в статически неопределяемом изгибаемом железобетонном элементе: 1 нормальные трещины; 2 наклонные трещины; 3 продольные трещины в сжатой зоне элемента. Если пренебречь растяжимостью бетона, то раскрытие трещин будет равно абсолютному удлинению арматуры на участке между трещинами: (1) где e sm среднее значение относительной деформации арматуры на участке между трещинами Здесь Ψs отношение средних относительных деформаций на участке между трещинами к относительным деформациям арматуры в сечении с трещиной e s. Ориентировочно можно принять Ψs = 0,9. Относительные деформации арматуры при достижении предела текучести можно принять для арматуры, имеющей физический предел текучести: из стали класса A-I = 0,0011; (2) 13

15 из стали класса А-П = 0,0019; из стали класса А-Ш = 0,0028. Для арматуры, не имеющей физического предела текучести, относительные деформации при достижении условного предела текучести можно вычислить по формуле (3) где σ sp2 напряжение в предварительно напряженной арматуре при напряжении в бетоне, равном нулю с учетом всех потерь. Для ориентировочных расчетов можно принять: σ sp2 = 0,6*R s.ser. Тогда для арматуры из стали: класса A-IV e s.pt = 0,0032; класса A-V e s.pt = 0,0037; класса В-II e s.pt = 0,0048; класса К-7 e s.pt = 0,0037. При таком подходе к решению поставленной задачи раскрытие трещин, соответствующее достижению предела текучести в арматуре, можно представить в виде следующей таблицы. Таблица 1 Раскрытие трещин a crс при достижении в арматуре предела текучести, мм Таким образом, чтобы судить о том, достигла ли арма- 14

16 тура предела текучести, нужно знать не только раскрытие трещин, но и расстояние между ними. Следует обратить внимание на то, что при малых расстояниях между трещинами текучесть в арматуре будет, наблюдаться при раскрытии трещин значительно меньшем, чем предусмотрено Нормами из условия сохранности арматуры от коррозии. При выяснении вопроса о достижении предела текучести в поперечной арматуре (поперечных стержнях, хомутах), учитывая, что наклонные трещины обычно располагаются под углом 45 к оси элемента, значение раскрытия трещин в таблице 1 следует умножить на коэффициент 0,7. За расстояние между трещинами в этом случае следует принимать расстояние по перпендикуляру к оси элемента между двумя соседними трещинами или (если трещина одна) длину поперечного стержня. О достижении предельных деформаций в сжатой зоне бетона судят по появлению трещин, параллельных оси элемента (рис. 2 и 3), и отслоению в этой зоне лещадок. Если наклонная трещина у свободной опоры элемента выходит на растянутую грань и раскрытие трещины превысило 0,5 мм, то это свидетельствует о том, что произошло продергивание продольной арматуры на опоре. Если одновременно появились продольные трещины в бетоне над концом наклонной трещины, то наступило аварийное состояние конструкции в связи с ее разрушением по наклонному сечению (рис. 4). Рис. 4. Схема разрушения железобетонного элемента по наклонному сечению из-за продергивания арматуры на свободной опоре: 1 продольные трещины в сжатой зоне элемента; 2 наклонная трещина; 3 продольная растянутая арматура; 4 поперечная арматура. 15

17 Трещины в бетоне вдоль продольной растянутой арматуры могут образоваться по следующим причинам: - коррозия арматуры, сопровождающаяся увеличением ее диаметра; - выпрямление арматурных стержней, первоначально имеющих изгиб; - продергивание арматуры на свободной опоре. Во всех трех случаях нарушается сцепление арматуры с бетоном, что увеличивает деформативность элемента и снижает его несущую способность. Об аварийном состоянии элемента можно говорить в том случае, если при этом раскрытие нормальных и наклонных трещин превышает указанные в таблице 1 и имеются продольные трещины с образованием лещадок в сжатой зоне бетона. При коррозии высокопрочной арматуры в предварительно напряженных железобетонных конструкциях появляется опасность внезапного хрупкого разрушения конструкции из-за обрыва арматуры. Поэтому наличие коррозии высокопрочной арматуры является признаком аварийного состояния конструкции. Продольные трещины вдоль сжатой арматуры свидетельствуют о том, что либо произошла коррозия арматуры, либо ее стержни начали терять устойчивость из-за чрезмерно большого расстояния между поперечной арматурой (рис. 5). В обоих случаях происходит снижение несущей способности элемента не только за счет изменения усилий, воспринимаемых сжатой арматурой, но и за счет уменьшения сжатой зоны бетона. Такое состояние является аварийным. Рис. 5. Схема разрушения в сжатой зоне бетона при потере устойчивости стержнями сжатой арматуры: 1 продольная сжатая арматура; 2 поперечная арматура. 16

18 Наличие трещин в консоли колонны обычно является признаком большой перегрузки консоли и грозит обрушением конструкции, опирающейся на нее. Поэтому колонна с трещинами в консолях является аварийной. Отклонение колонны от вертикали, допущенное в процессе монтажа, не всегда служит показателем ее неудовлетворительной работы. При надежной связи отклонившейся колонны с перекрытиями и хорошим омоноличиванием последних ее деформация в горизонтальном направлении возможна только при деформации всего температурно-усадочного блока, т. е. дополнительное усилие от наклона колонны будет распределяться между всеми колоннами температурно-усадочного блока . Если же отклонение колонны от вертикали произошло в процессе эксплуатации здания и сопровождается неравномерной осадкой фундаментов, то это может свидетельствовать о приближении аварии здания и требует немедленной оценки состояния всех примыкающих к отклоненной колонне конструкций. Нарушение целостности стыков сопряженных элементов является признаком аварийного состояния отклонившейся конструкции и элементов, опирающихся на нее. В процессе эксплуатации здания или сооружения железобетонные конструкции могут получить различные повреждения. Чаще всего повреждения бывают механического или физико-химического характера. В результате механических ударов по поверхности конструкции могут произойти местные повреждения бетона и арматуры. Сколы бетона наиболее опасны в сжатой зоне элемента. При ударе возможны повреждения арматуры в виде ее деформации или уменьшения размеров поперечного сечения. Если при ударе образовалось искривление арматурного стержня с отслоением защитного слоя, то происходит снижение предельного усилия, которое может воспринять деформативный стержень. В растянутом стержне предельное усилие можно вычислить по формуле: 17

19 где δ l относительное значение предельного усилия в стержне с учетом наличия искривления, которое можно определить по графику на рис. 6 в зависимости от относительного значения стрелки искривления lo/d; r радиус поперечного сечения искривленного стержня. (4) Рис. 6. Зависимость относительного усилия δ 1 = 4N/Rsnd2 в стержне от относительного эксцентриситета lo/d В сжатом стержне при потере его связи с бетоном предельное усилие можно вычислить как в стальном внецентренно сжатом элементе по формуле: где φ е коэффициент, определяемый по таблице 74 в зависимости от приведенного относительного эксцентриситета m ef и условной гибкости λ. Значение m ef вычисляется по формуле: где h коэффициент формы сечения, который можно принять равным 1; m относительный эксцентриситет, оп- (5) (6) 18

20 ределяемый по формуле: Условная гибкость l вычисляется по формуле: где s шаг поперечной арматуры. (7) (8) Рис. 7. Зависимость степени снижения прочности арматурного стержня δ2 от относительной глубины повреждения h 1 /d. Если при ударе образовалось повреждение арматурного стержня, приведшее к снижению размера его поперечного сечения без потери связи арматуры с бетоном, то предельное значение в поврежденном растянутом или сжатом стержне можно вычислить по формуле: где δ2 коэффициент, характеризующий степень снижения прочности поврежденного арматурного стержня, значение которого можно определить по графику на рис. 7, в зависимости от относительной глубины повреждения стержня (9) 19

21 h l /d; g s коэффициент, учитывающий концентрацию напряжений у места повреждения стержня (10) Если арматурный стержень при ударе получил одновременно и искривление с потерей связи с бетоном, и дефект в виде уменьшения размера поперечного сечения в плоскости, перпендикулярной плоскости изгиба, то в растянутом стержне предельное усилие можно определить из выражения (11) В сжатом стержне в этом случае происходит снижение усилия Nsu в зависимости от стрелки искривления и глубины повреждения стержня. Ориентировочно значение Nsu для сжатого стержня можно получить из выражения (12) Вычислив несущую способность элемента с учетом предельного расчетного усилия в поврежденном арматурном стержне, сравнив ее с расчетным усилием в элементе и учтя наличие и характер трещин в бетоне, принимают решение о возможности признания конструкции аварийной. Эксперименты, проведенные в ВИТУ О. Б. Керженцевым, показали, что при наличии одностороннего повреждения растянутой арматуры разрушение железобетонных элементов происходит с разрывом поврежденной арматуры при относительно небольших деформациях элементов. Отсюда следует вывод: односторонние повреждения растянутой арматуры свидетельствуют об аварийном состоянии железобетонной конструкции. При воздействии агрессивной среды происходит изменение прочности бетона, местное его разрушение, коррозия арматуры. 20

22 Если при повреждении железобетонных конструкций появляются рассмотренные выше признаки, свидетельствующие о большой их перегрузке (трещины, отслоение лещадок в сжатой зоне элементов и др.), то поврежденные конструкции следует считать аварийными В некоторой технической литературе предлагается относительный прогиб обычных изгибаемых железобетонных элементов, превышающий 1/150 пролета, считать признаком аварийного состояния конструкции. В других источниках, например, в Рекомендациях , аварийное состояние конструкции предлагается считать при относительном прогибе, большем или равном 1/50. Однако сам по себе большой прогиб железобетонных элементов свидетельствует лишь о их малой изгибной жесткости. О близости к аварийному состоянию изгибаемых железобетонных элементов можно судить по значениям относительного прогиба, соответствующим достижению предельного состояния по прочности, который определяется по формуле (13) где δ коэффициент, зависящий от расчетной схемы изгибаемого элемента; Ми предельный изгибающий момент, который может воспринять нормальное сечение элемента при достижении предельного состояния первой группы; В изгибная жесткость элемента. Для прямоугольного сечения с одинарной арматурой (14) где μ коэффициент армирования (15) 21

23 При кратковременном нагружении значение В можно вычислить по формуле (16) а при длительном воздействии нагрузки и относительной влажности воздуха W 40% (17) После подстановки (14) и (16) в уравнение (13) получаем (18) а после подстановки (14) и (17) в уравнение (13) имеем (19) Так как прогиб изгибаемых элементов отсчитывается от прямолинейной оси элемента, то в предварительно напряженных балках из значения относительного прогиба, подсчитанного по формуле (18), следует вычесть относительный выгиб от кратковременного действия усилия предварительного обжатия Р, подсчитанный по формуле (20) а из значения относительного прогиба, подсчитанного по формуле (19), вычесть еще и дополнительный относительный выгиб от усадки и ползучести бетона, определяемый из выражения (21) где εb и εb относительные деформации бетона от усадки и ползучести на уровне соответственно растянутой 22

24 арматуры и наиболее сжатой грани сечения, вычисляемые по Нормам . Если относительный прогиб элемента превышает значения, вычисленные по формулам (18) и (19), но трещины в растянутой зоне раскрыты не более, чем приведенные в таблице 1, и отсутствуют признаки разрушения сжатой зоны, то следует считать состояние конструкции предаварийным. При раскрытии трещин в растянутой зоне больше приведенных в таблице 1 и наличии признаков начала разрушения сжатой зоны бетона состояние конструкции следует считать аварийным. На рис. 8 представлена зависимость относительного прогиба f/l железобетонных изгибаемых элементов от отношения пролета l к рабочей высоте сечения h 0 при достижении в нормальных сечениях первой группы предельных состояний для балок прямоугольного сечения из бетона класса В20 при арматуре из стали класса A-III и μ= 0,015. Рис. 8. Зависимость относительного изгиба f/l железобетонного изгибаемого элемента от отношения пролета l к рабочей высоте сечения hо при классе бетона В20, классе арматуры А-Ш и р. = 0,015: 1 для однопролетной свободно опертой балки и кратковременного действия нагрузки; 2 то же для длительного действия нагрузки; 3 для консольной балки и кратковременного действия нагрузки. Из рис. 8 видно, что достижение предельного состояния первой группы в нормальном сечении может происходить при значениях относительных прогибов, заметно отличаю- 23

25 щихся от 1/150 как в одну, так и в другую сторону. Таким образом, для использования критерия относительного прогиба железобетонных конструкций при установлении их аварийного состояния следует производить каждый раз расчет значения относительного прогиба исходя из конкретных условий (пролета и схемы изгибаемого элемента, классов бетона и арматуры, коэффициента армирования). В ряде случаев, когда нет видимых признаков перегрузки железобетонных конструкций, они могут находиться в предаварийном состоянии. Это бывает тогда, когда не обеспечивается устойчивость конструкции. Сюда можно отнести пропуски или некачественное выполнение вертикальных связей, отсутствие или непроектное выполнение сварки закладных деталей. В этих случаях даже при незначительном увеличении нагрузок может произойти обрушение конструкций. В последнее время участились случаи обрушения балконов и козырьков. Если балконная плита или козырек железобетонные, то признаки их аварийного состояния связаны с дефектами как растянутой арматуры, так и сжатой зоны бетона. При неудовлетворительном состоянии или отсутствии гидроизоляции балконных плит и козырьков в результате многократного воздействия атмосферных осадков и перепадов температуры происходит разрушение верхней и нижней зон плит, что вызывает коррозию арматуры и бетона. При повреждении коррозией арматурных стержней более чем на 30% следует считать состояние плит балконов и козырьков аварийным. При недостаточной плотности бетона, увлажнении его из-за плохой гидроизоляции плиты и попеременном замораживании и оттаивании происходит быстрое разрушение нижней поверхности плиты. При этом уменьшается рабочая высота сечения плиты. Разрушение более чем на 30% по глубине бетона плиты является признаком ее аварийного состояния. 24

26 5. Признаки аварийного состояния каменных конструкций О большой перегрузке элементов каменной кладки можно судить по наличию в них трещин. Трещины могут быть видимые, выходящие на поверхность кладки, и невидимые внутреннее расслоение. Однако не все трещины в кладке свидетельствуют о ее перегрузке. Трещины в каменной кладке могут появляться также в результате неравномерной осадки фундаментов и температурного воздействия . При неравномерной осадке фундаментов и температурном воздействии в результате перераспределения усилий между элементами кладки может произойти перегрузка отдельных элементов с образованием в них трещин силового происхождения. Наступление аварийного состояния каменной кладки в связи с ее перегрузкой соответствует третьей стадии напряженно деформированного состояния кладки. Эта стадия характеризуется появлением часто расположенных вертикальных трещин, имеющих небольшое раскрытие и проходящих через вертикальные швы кладки и несколько рядов камня (рис. 9). Рис. 9 Схема третьей стадии напряженно деформированного состояния каменной кладки. 25

27 Трещины, выходящие на наружную поверхность каменного элемента, обычно сопровождаются внутренним расслоением кладки. Это можно установить при простукивании каменного элемента. Если есть его внутреннее расслоение, то при ударе по поверхности кладки слышен глухой звук. Как говорят строители, кладка при этом «бухтит». Внутреннее расслоение кладки часто приводит к выпучиванию наружной версты кладки. Рекомендации предлагают считать недопустимым отклонение от вертикали элемента каменной кладки более чем на 1/3 высоты сечения элемента. При учете этих рекомендаций следует иметь в виду, что если отклонение от вертикали допущено при выполнении кладки, то горизонтальная составляющая усилия, возникающая от этого отклонения, будет гаситься связью отклонившегося элемента с другими участками кладки и перекрытиями. При таком отклонении от вертикали каменного элемента следует произвести его расчет с учетом связи с примыкающими элементами кладки и перекрытиями . Если расчет покажет удовлетворительное состояние кладки, то не появится оснований считать такой элемент аварийным. При отклонении участков стены или столба от вертикали с отрывом их от соседних элементов стен, вызванным неравномерной осадкой фундаментов, в случае когда стабилизации осадки не произошло, появляется опасность обрушения отколовшихся элементов каменной кладки. Это следует считать аварийным состоянием кладки. Опасным является появление трещин в кладке под концами балок, прогонов, перемычек больших пролетов или под опорными подушками (рис. 10). При этом возникает возможность обрушения элемента, опирающегося на кладку. Это аварийное состояние элемента. При недостаточном опирании плит перекрытий на стены может произойти скол кладки под концом плиты, а также продергивание арматуры плиты на опоре. При отсутствии видимых признаков разрушения кладки под концом плиты и 26

28 наклонных трещин в плите состояние плиты следует считать предаварийным. В случае увеличения нагрузки на плиту она может обрушиться. Рис. 10. Схема разрушения каменной кладки под опорной подушкой. 1 балка; 2 опорная подушка; 3 наклонная трещина. Трещины в кладке, вызванные неравномерной осадкой фундаментов, температурным воздействием, а также отсутствие перевязок продольных и поперечных стен приводят к снижению пространственной жесткости здания. Это предаварийное состояние здания. В случае появления значительных горизонтальных усилий может произойти обрушение конструкций. Поэтому пространственную жесткость здания всегда нужно восстанавливать . Известны случаи обрушения отдельно стоящих кирпичных стен, не раскрепленных перекрытиями и стенами перпендикулярного направления, от действия ветровой нагрузки. Это может произойти при нарушении технологии возведения новых стен или разборки старых. Отдельно стоящую стену можно считать аварийной, если ее высота оказывается больше определенной по формуле (22) где h толщина стены; γf коэффициент надежности по нагрузке, равный 0,9; ρ плотность кладки; g ускорение силы тяжести; с аэродинамический коэффициент, принимаемый по Нормам ; w скоростной напор, прини- 27

29 маемый по Нормам ; у коэффициент надежности по ветровой нагрузке. 28

30 6. Признаки аварийного состояния конструкций крупнопанельных зданий Фундаменты, перекрытия, лестницы крупнопанельных зданий имеют те же признаки аварийного состояния, что и аналогичные конструкции других зданий. Специфические признаки аварийного состояния имеют стеновые панели и узлы соединения стеновых панелей друг с другом и с плитами перекрытий. Обрушение крупнопанельного здания может произойти в результате большой неравномерной осадки фундаментов, приведшей к нарушению целостности отдельных панелей и узлов их сопряжения. Также возможна авария крупнопанельного здания из-за разрушения отдельных несущих панелей при недостаточной их несущей способности или из-за низкого качества горизонтальных швов. При качественном выполнении узлов сопряжения стеновых панелей друг с другом и с плитами перекрытий разрушение одной стеновой панели не должно приводить к прогрессирующему обрушению всего здания или всех конструкций, расположенных выше. Это обеспечивается специальной конструкцией узлов сопряжения элементов крупнопанельных зданий, допускающих большие пластические деформации. Проконтролировать качество выполнения узлов соединения можно только в процессе производства строительномонтажных работ или при вскрытии узлов возведенного здания. Однако в последнем случае наносится значительный ущерб целостности конструкций, их внешнему виду и на время вскрытия узлов и их последующего ремонта затрудняется эксплуатация помещений. Следует иметь в виду, что связи в узлах соединения элементов крупнопанельных зданий друг с другом должны выполняться строго по проекту. Как уменьшение, так и увеличение поперечного сечения связей будут иметь отрицательные последствия. При уменьшении поперечного сечения связи будет недостаточная прочность соединения, а при увеличении поперечного сечения произой- 29

31 дет уменьшение пластической деформации связи . Отдельные навесные стеновые панели могут выпасть из стены из-за разрушения связей. Предвестником этого является выход панели из плоскости стены, появление ржавых пятен в местах расположения стальных связей и трещин в горизонтальных и вертикальных швах по периметру панели. Если навесные панели прикреплены к каркасу, то зазоры, даже значительные, между панелью и каркасом не могут служить основанием для признания панели аварийной. В большинстве случаев наличие большого зазора между некоторыми стеновыми панелями и колоннами каркаса свидетельствует о небрежном монтаже каркаса, то есть о том, что колонны смонтированы не в одной плоскости. В этом случае следует проверить положение сомнительной панели относительно наружной поверхности стены. Если панель не выходит наружу относительно внешней стороны стены, то ее состояние следует признать удовлетворительным. Вертикальные и горизонтальные трещины в стеновых панелях увеличивают их проницаемость. Горизонтальные трещины, кроме того, снижают жесткость панели из ее плоскости. Рис. 11. Схема наклонных трещин в стеновой панели: а в панели без проема; б в панели с проемом; 1 трещины. Опасным является наличие наклонных трещин (рис. 11), так как вдоль трещины может произойти сдвиг частей панели с последующим их разрушением . Признаком возможного разрушения является и появление трещин и отслоенных лещадок у горизонтальных швов между панелями, что свиде- 30

32 тельствует о большой неоднородности растворной постели в этом шве Отслоение и выпадение наружного защитного слоя не может являться признаком аварийного состояния стеновой панели. При разрушении наружного защитного слоя появляется опасность увлажнения стены дождем и снижения ее теплотехнических свойств. 31

33 7. Признаки аварийного состояния стальных конструкций При обнаружении таких дефектов стальных конструкций, как общий и местный изгиб стального элемента, местное ослабление сечения, коррозия стали, для определения состояния стального элемента нужно выполнить расчеты прочности с учетом выявленных дефектов. Методика этих расчетов изложена в Справочнике . Однако в ряде случаев и без выполнения поверочных расчетов можно сделать вывод о наличии аварийного состояния стальных конструкций. Наличие трещин в сварных швах, в околошовной зоне, поперечных трещин в растянутых элементах, а также трещин, идущих от заклепочных отверстий, является бесспорным признаком аварийного состояния конструкций. Часто причиной аварий стальных конструкций является потеря местной устойчивости в узлах сопряжения. На рис. 12, а изображены схемы образования местного выпучивания стенки сварного двутавра в сопряжении стойки рамы с ригелем. В местах перелома пояса сварного двутавра из-за концентрации напряжений в тонкой стенке произошла местная потеря устойчивости стенки, которая привела к обрушению рам спортивного сооружения. Аналогичное явление произошло и в стальных рамах складского здания (рис. 12, б). Этой аварии не произошло бы, если бы в местах перелома пояса были установлены ребра жесткости . В Ленинграде произошла авария структурного покрытия спортивного сооружения из стальных труб и фасонного проката . Причиной аварии была потеря устойчивости фасонки у верхнего пояса структуры из-за большого расстояния между элементом решетки и верхним поясом (рис. 12, в). При монтаже структуры был допущен изгиб фасонки, что усугубило ее сложное напряженное состояние. 32

34 Рис. 12. Схема узлов примыкания элементов стальных конструкций, приведших к авариям: а ригеля и колонны спортивного здания; б ригеля и колонны складского здания; в раскоса к горизонтальным верхним элементам структурного покрытия; 1 сосредоточение усилия, действующее на стенку элементов двутаврового сечения, 2 проектные ребра жесткости; 3 ребра жесткости, обеспечивающие местную устойчивость стенок элементов; 4 трубчатые раскосы; 5 верхние горизонтальны элементы структурного покрытия; 6 нижняя грань фасонки по проекту КМ; l большая свободная длина фасонки. Отсюда можно сделать вывод, что любая местная деформация в узлах сопряжения стальных элементов является признаком аварийного состояния конструкции. Иногда при устройстве внутренних стен и перегородок они пересекают конструкции перекрытий и покрытий без оставления необходимых зазоров в местах их пересечений (рис. 13). 33

35 Рис. 13. Схема пересечения стропильной фермы с перегородкой а правильное решение пересечения, в неправильное решение пересечения, 1 плита перекрытия, 2 пояса фермы, 3 перегородка, 4 отверстия в перегородке в местах пересечения ее с поясами фермы, заполненные эластичным материалом, 5 зазор между перегородкой и плитой покрытия Если стены или перегородки опираются на фундаменты, не связанные с фундаментами несущих конструкций, на которые оперты конструкции перекрытий и покрытий, то при разности осадок фундаментов происходит либо зависание стен (перегородок) на конструкции перекрытий (покрытий), либо последние опираются на эти стены и работают в нерасчетном режиме. Это может привести к аварии конструкций перекрытия и покрытия. Так же как и в отношении железобетонных изгибаемых элементов, нельзя судить об аварийном состоянии стальных балок только по какому-либо фиксированному значению относительного прогиба. Необходимо принимать во внимание также пролет и высоту сечения балки. При закреплении верхнего пояса от смещения в горизонтальной плоскости предельное усилие, которое может воспринять нормальное сечение балки, выражается формулой 34

36 Mu=R y g с W, (23) где g с коэффициент условной работы балки. Рис. 14. Зависимость относительного прогиба стальной балки от отношения пролета l к высоте сечения h при достижении нормальным сечением предельного состояния по прочности: 1 для однопролетной свободно опертой балки; 2 для консольной балки. Значение относительного прогиба при этом с учетом формулы (13) определяется по формуле (24) На рис. 14 показана зависимость относительного прогиба стальной балки при достижении предельного состояния нормального сечения по прочности от значения отношения пролета l к высоте сечения балки h при исходных данных R у γ c = 200 МПа и Е = 2*10 5 МПа. Так же как и для железобетонного изгибаемого элемента, имеются большие колебания в значениях предельного из условия прочности прогиба стальной балки при изменении ее пролета и высоты сечения. 35

37 8. Признаки аварийного состояния деревянных конструкций Обрушение деревянных конструкций чаще всего происходит из-за низкого качества стыков их элементов. Бесспорным признаком аварийного состояния растянутых стыков является наличие продольных трещин у нагелей и гвоздей (рис. 15). При этом происходит выключение из работы нагелей или гвоздей, рядом с которыми возникли трещины. Опасным для конструкции является скалывание площадки в лобовой врубке (рис. 16). В этом случае все усилие в примыкающем элементе будет передаваться на стяжной болт, это усилие вызовет изгиб болта и смятие древесины в обоих сопряженных элементах. Рис. 15. Схема трещин у нагелей в растянутом стыке деревянных элементов, свидетельствующих об опасности разрушения стыка: 1 трещины. Рис. 16. Скалывание площадки в лобовой врубке, могущее привести к обрушению всей конструкции: 1 линия скола; 2 стяжной болт. 36

38 При отсутствии стяжного болта в лобовой врубке состояние деревянной конструкции следует считать предаварийным, так как в случае скалывания по какой-либо причине площадки врубки произойдет обрушение конструкции. Так же как и для конструкций из других материалов, о напряженном состоянии деревянных элементов.можно судить по их прогибам. Относительные прогибы деревянных балок при достижении в нормальных сечениях предельного состояния первой группы выражаются уравнением (25) На рис. 17 представлена зависимость относительного прогиба изгибаемого деревянного элемента при достижении предельного состояния по прочности нормального сечения от отношения пролета l к высоте сечения h для условий Rи= 14 МПа и E=10*10 3 МПа. Рис. 17. Зависимость относительного прогиба деревянной балки от отклонения пролета / к высоте сечения h при достижении нормальным сечением предельного состояния по прочности: 1 для однопролетной свободно опертой балки; 2 для консольной балки. 37

39 Если относительный прогиб обследуемой конструкции превышает относительный прогиб, подсчитанный по формуле (25), то конструкция испытывает перенапряжение. В этом случае можно говорить об аварийном состоянии деревянного изгибаемого элемента. Древесина на сжатие работает упругопластически, а на растяжение упруго . Перед разрушением изгибаемого деревянного элемента в его сжатой зоне древесина работает пластически, а в растянутой зоне деформации в основном упругие. Разрушение нормального сечения изгибаемого элемента происходит при разрыве его растянутых волокон. Признаком приближающегося разрушения может служить начало потери устойчивости сжатых волокон, сопровождающееся выпучиванием древесины в сжатой зоне (на сжатой грани образуются складки). Если несущая способность подвергшегося гниению деревянного элемента, подсчитанного за вычетом пораженной древесины, оказалась недостаточной, то такой элемент следует считать аварийным. 38

40 Заключение Описанию аварий строительных конструкций посвящена обширная литература. При этом главное внимание уделяется причинам аварий и их последствиям. Признаки аварийного состояния, как правило, рассматриваются недостаточно подробно. Не изучаются признаки аварийного состояния конструкций и в технических учебных заведениях. В связи с этим инженерно-технические работники, даже встретившись с явными признаками аварийности конструкций зданий и сооружений, не всегда адекватно реагируют на них. Это может привести к аварии здания или сооружения, которую можно было бы легко предотвратить. Вопросы предаварийного и аварийного состояния строительных конструкций зданий и сооружений недостаточно разработаны и теоретически, и практически. Представляется очень важным углубленная проработка этих вопросов, обобщение и публикация всех известных материалов по данному направлению строительной науки. 39

41 ЛИТЕРАТУРА 1. Алексеев В. К. Гроздов В. Т., Тарасов В. А. Дефекты несущих конструкций зданий и сооружений, способы их у- странения. М.: Минобороны, с. 2. Анализ причин аварий строительных конструкций. Выпуск 1. М.: Изд-во по строительству, с. 3. Андреев С. А. Предупреждение аварий и повреждений зданий. М.: Изд-во Министерства коммунального хозяйства РСФСР, с. 4. Бедов А. И., Сапрыкин В. Ф. Обследование и реконструкция железобетонных и каменных конструкций эксплуатируемых зданий и сооружений. М.: Изд-во АСВ, с. 5. Вейц Р. И. Предупреждение аварий при строительстве зданий. Л.: Стройиздат, г 145 с. 6. Гроздов В. Т. Дефекты основных несущих железобетонных конструкций каркасных многоэтажных промышленных и общественных зданий и методы их устранения / СПбВВИСУ. СПб, с. 7. Гроздов В. Т. Дефекты сборных железобетонных несущих конструкций одноэтажных каркасных промышленных зданий и методы их устранения/спбввису. СПб, с. 8. Гроздов В. Т. Дефекты конструкций крупнопанельных зданий, снижающие несущую способность зданий, и их устранение/спбввису. СПб, с. 9. Гроздов В. Т. Дефекты каменных зданий и методы их устранения / СПбВВИСУ. СПб, с. 10. Гроздов В. Т. Дефекты фундаментов зданий и сооружений, способы их устранения и усиление оснований и фундаментов / СПбВВИСУ. СПб, с. 11. Гроздов В. Т. Поверочные расчеты элементов строительных конструкций при техническом обследовании зданий и сооружений/спбввису. СПб, с. 12. Гроздов В. Т. Приближенный способ учета влияния некоторых дефектов монтажа элементов железобетонных кар- 40

42 касов на усилия в колоннах // Известия вузов: Строительство и архитектура С Гроздов В. Т. Определение дополнительных усилий в колоннах многоэтажных каркасных зданий при смещении ригеля из плоскости рамы // Известия вузов: Строительство и архитектура С Гроздов В. Т. Влияние некоторых дефектов монтажа железобетонных каркасов одноэтажных промышленных зданий на усилия в колоннах//известия вузов: Строительство и архитектура С Гроздов В. Т. Дефекты стыков колонн в каркасах серии ИИ-04 и и влияние их на несущую способность колонн//известия вузов: Строительство С Гроздов В. Т. Дефекты стыков стеновых панелей и влияние их на несущую способность крупнопанельных зданий// Известия вузов: Строительство С Гроздов В. Т. Влияние несоосности выпусков арматуры из ригелей и колонн в многоэтажных промышленных каркасных зданиях серии ИИ-20/70 и на несущую способность ригелей // Перспективы развития строительных конструкций: Сб. статей / ЛДНТП. СПб, С Гроздов В. Т. О разрушении стены от воздействия сезонного периода температуры наружного воздуха // Известия вузов: Строительство С Гроздов В. Т. Техническое обследование строительных конструкций зданий и сооружений / ВИСИ. СПб, с. 20. Гроздов В. Т. Дефекты строительных конструкций и их последствия / БИТУ. СПб, с. 21. Гроздов В. Т., Полянский М. М. Об одном недостатке конструкций ребристых плит для перекрытий многоэтажных промышленных зданий // Известия вузов: Строительство и архитектура С. 5, Гроздов В. Т., РуденкоВ. В. Учет пространственной жест- 41

УДК 69.059.2 ОЦЕНКА СОСТОЯНИЯ КАМЕННОЙ КЛАДКИ ПОСРЕДСТВОМ НАБЛЮДЕНИЯ ЗА ТРЕЩИНАМИ С.В. Гутенева, А.И. Гаврилова Проанализирован характер трещин в каменной кладке, оценено их влияние на напряженное состояние

Федеральное агентство образования Российской Федерации Пермский Национальный Исследовательский Политехнический Университет Кафедра строительных конструкций Реферат «Алгоритм визуального обследования строительных

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирская государственная автомобильно-дорожная академия (СибАДИ)» ПРОГРАММА вступительного экзамена

СОДЕРЖАНИЕ Введение.. 9 Глава 1. НАГРУЗКИ И ВОЗДЕЙСТВИЯ 15 1.1. Классификация нагрузок........ 15 1.2. Комбинации (сочетания) нагрузок..... 17 1.3. Определение расчетных нагрузок.. 18 1.3.1. Постоянные

Общероссийский общественный фонд «Центр качества строительства» Санкт-Петербургское отделение В. Т. Гроздов ПРИЗНАКИ АВАРИЙНОГО СОСТОЯНИЯ НЕСУЩИХ КОНСТРУКЦИЙ ЗДАНИЙ И СООРУЖЕНИЙ Оанкт-ПетерБ^рг Издательский

Дана характеристика и приведены принципы проектирования и расчета конструктивных элементов и систем жилых, общественных и промышленных зданий и сооружений с элементами статики. Описаны закономерности поведения

ОБ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ ВОЗВОДИМЫХ ЗДАНИЙ Касимов Р.Г. Оренбургский государственный университет, г. Оренбург Несмотря на огромный опыт человечества в проектировании и строительстве зданий и сооружений,

Расчет элементов стальных конструкций. План. 1. Расчет элементов металлических конструкций по предельным состояниям. 2. Нормативные и расчетные сопротивления стали 3. Расчет элементов металлических конструкций

ВОССТАНОВЛЕНИЕ КОНСТРУКЦИЙ ПРОИЗВОДСТВЕННОГО КОРПУСА, ПОВРЕЖДЕННЫХ В РЕЗУЛЬТАТЕ ПОЖАРА УДК 621.771.63 А.В. Столбов ГОУ ВПО «Камская государственная инженерно-экономическая академия» И.И. Маннанов Управление

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Пензенский государственный университет архитектуры

ТРЕБОВАНИЯ, ПРЕДЬЯВЛЯЕМЫЕ К ЗАКОНЧЕННЫМ БЕТОННЫМ, ЖЕЛЕЗОБЕТОННЫМ И МЕТАЛЛИЧЕСКИМ КОНСТРУКЦИЯМ ИЛИ ЧАСТЯМ СООРУЖЕНИЙ (СНиП 3.03.01-7) Приемка бетонных и ж/б конструкций. 1. Отклонение линий плоскостей пересечения

1 1 дек а бря 1 дек а бря Каменная кладка, армированная композитной сеткой OCKMSH 1 1. Общие указания 1.1. Композитная сетка OCKMSH представляет собой арматурные композитные стержни расположенные в перпендикулярных

ГОУ ВПО ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 1. 1.Сущность и особенности работы железобетонных конструкций. 2. Стыки сборных колонн многоэтажных зданий. ГОУ ВПО ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ 2. 1. История и перспективы развития

ЛЕКЦИЯ 8 5. Конструирование и расчет элементов ДК из нескольких материалов ЛЕКЦИЯ 8 Расчет клееных элементов из древесины с фанерой и армированных элементов из древесины следует выполнять по методу приведенного

ОБЩИЕ ПОЛОЖЕНИЯ Программа вступительного экзамена в аспирантуру Восточно-Сибирского государственного университета технологий и управления по специальности 05.23.01 Строительные конструкции, здания и сооружения

1 Лекция 7 Материал подпорных стен Для бетонных и железобетонных подпорных стен необходимо применять бетоны по прочности на сжатие от В15 до В35. Для бетонной подготовки применяется бетон класса В3,5 и

УДК 624.016:624.042.7. аздел 1. Строительные конструкции, здания и сооружения 5 Ажермачев Г. А., к.т.н., профессор; Абдурахманов А. З., магистр Национальная академия природоохранного и курортного строительства

Астраханский колледж строительства и экономики Порядок расчета предварительно напряженной ребристой плиты на прочность для специальности 713 «Строительство зданий и сооружений» 1. Задание дл проектирования

ЛЕКЦИЯ 4 3.4. Элементы, подверженные действию осевой силы с изгибом 3.4.1. Растянуто-изгибаемые и внецентренно-растянутые элементы Растянуто-изгибаемые и внецентренно-растянутые элементы работают одновременно

УСИЛЕНИЕ ПЛИТНОГО ФУНДАМЕНТА ПОД КОЛОННУ ФГБОУ ВПО «Уральский государственный университет путей сообщения», г. Екатеринбург Х. Ягофаров Профессор кафедры «Строительные конструкции и строительное производство»,

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Пермский национальный исследовательский политехнический

Раздел 2. Строительные конструкции, здания и сооружения 57 УДК 624.04:681.3 Васильев М.В. Национальная академия природоохранного и курортного строительства Численное моделирование каркасно-каменных панелей

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ С Т Р О И Т Е Л Ь Н Ы Й Ф А К У Л Ь Т Е Т Н А У Ч Н О - М Е Т О Д И Ч Е С К И Й С Е М И Н А Р ПОВЫШЕНИЕ КАЧЕСТВА ПОДГОТОВКИ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ «ПРО

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО СТРОИТЕЛЬСТВУ В ФГБОУ ВО «ПГУ» В 2016 ГОДУ (направление 08.04.01 «Строительство») Раздел «Строительные материалы» 1. Классификация строительных материалов. 2. Классификация

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ЖЕЛЕЗОБЕТОННЫЕ, БЕТОННЫЕ И КАМЕННЫЕ КОНСТРУКЦИИ Ульяновск 2003 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Оглавление 1. Введение... 3 1.1. Состояние вопроса... 3 1.2. Краткая характеристика... 3 2. Результаты обследования... 6 3. Выводы и рекомендации... 8 4. Перечень использованных нормативно-технических

ВОПРОСЫ к итоговому междисциплинарному экзамену по направлению 08.03.01 «Строительство» - профиль «ПГС» (бакалавриат) на 2016 учебный год. 1. АРХИТЕКТУРА 1. Классификация зданий по различным признакам.

Усиление деревянных конструкций Решение по восстановлению деревянных конструкций принимается после проведения детального инженернотехнического обследования всех строительных конструкций здания или сооружения.

2 1. Цель освоения дисциплины Целью освоения дисциплины «Строительные конструкции» является формирование навыков расчета и конструирования металлических, деревянных, железобетонных конструкций зданий и

4 Проектирование двускатной решетчатой балки БДР8 Двускатные решётчатые балки нашли широкое применение в конструкциях одноэтажных промышленных зданий Они используются в качестве несущих элементов покрытия,

2 1. Содержание разделов и тем учебной дисциплины 1.1 Строительная механика. 1. Расчет статически определимых ферм. 2. Расчет статически определимых арок. 3. Потенциальная энергия деформации стержневой

По дисциплинам кафедры «Железобетонных и каменных констркуций» 1. Компоновка одноэтажных промышленных зданий из сборных железобетонных конструкций; основы статического расчета поперечной рамы на различные

Стальные фермы. План. 1. Общие сведения. Типы ферм и генеральные размеры. 2. Расчет и конструирование ферм. 1. Общие сведения. Типы ферм и генеральные размеры. Фермой называется стержневая конструкция,

Испытания сталежелезобетонных конструкций. Разработка стандарта организации «Сталежелезобетонные конструкции. Правила проектирования» В.И. Травуш Испытания сталежелезобетонных конструкций. Железобетонные

СОВРЕМЕННЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОНСТРУКЦИИ СЕЙСМОСТОЙКИХ ЗДАНИЙ Сейсмостойкость зданий. Особенности объемно-планировочных и конструктивных решений Способность здания или сооружения противостоять сейсмическим

Предисловие

Аварии строительных конструкций зданий и сооружений наносят значительный экономический ущерб и часто сопровождаются гибелью и ранением людей.

Происходят аварии строительных конструкций обычно из-за совокупности причин: ошибок при проектировании, низкого качества материалов, используемых для несущих конструкций, нарушении технологии изготовления и монтажа строительных конструкций, несоблюдения правил эксплуатации зданий и сооружений.

Аварии строительных конструкций редко происходят внезапно. Обычно можно наблюдать ряд предвестников аварии. Если своевременно заметить признаки приближающейся аварии, то можно вовремя принять профилактические меры: вывести людей из опасной зоны, произвести разгрузку аварийной конструкции, установить временные крепления и т. п. Поэтому так важно инженерно-техническому персоналу строительных и эксплуатационных организаций знать признаки аварийного состояния конструкций.

1. Общие положения по оценке аварийности

строительных конструкций

Термин «авария» и связанные с ним понятия «аварийное состояние», «предаварийное состояние» не имеют твердых общепринятых толкований. В данной работе под аварией строительных конструкций здания или сооружения подразумеваются обрушение строительной конструкции или всего здания или сооружения в целом, а также получение ими таких деформаций, которые делают невозможным их эксплуатацию.

Под аварийным состоянием подразумевается такое состояние конструкции здания или сооружения, при котором с большой степенью вероятности можно ожидать в ближайшее время их аварию.

Предаварийным состоянием будем называть такое состояние конструкции, когда в случае продолжения неблагоприятных воздействий (неравномерных осадок фундаментов, перепадов температуры, агрессивной среды и т. п.) может наступить авария конструкции.

Авария строительных конструкций может произойти из-за наличия в них скрытых дефектов, в результате хрупкой работы конструкции, когда разрушение происходит без предварительных сильных деформаций. В этом случае установить факт наличия аварийного состояния конструкции очень трудно.

Однако в большинстве случаев аварии конструкции предшествуют развитие больших деформаций, появление и раскрытие трещин и др. видимые признаки аварийного состояния.

Наряду с визуальным и визуально-инструментальным обследованием для установления аварийности конструкции обычно производят поверочные расчеты конструкции. При поверочных расчетах об аварийном состоянии конструкции судят по степени превышения расчетной нагрузки значения расчетной несущей способности конструкции с учетом выявленных в ней дефектов.

В существующих нормах проектирования принято следующее положение если какое-либо сечение конструкции достигло первой группы предельных состояний, то это предельное состояние наступает и во всей конструкции. В отношении аварийного состояния это справедливо для статически определяемых систем. В статически неопределяемых системах достижение в каком-либо одном сечении предельного состояния обычно не связано с обрушением конструкции. Это также должно быть учтено при решении вопроса о признании состояния конструкции аварийным. Анализ результатов обследования и поверочных расчетов позволяет дать достоверный ответ на вопрос, является ли состояние конструкции аварийным.

При этом можно встретить следующие случаи:

1. Обследование конструкций выявляет признаки, по которым можно судить, что конструкция находится в аварийном состоянии. То же подтверждают и поверочные расчеты.

2. Обследование выявляет признаки аварийного состояния конструкции, но поверочные расчеты это не подтверждают.

3. Результаты поверочных расчетов говорят о наличии аварийного состояния конструкции, а обследование признаков такого состояния не обнаруживает.

Во втором случае следует проанализировать поверочные расчеты, а именно: учтено ли при их выполнении влияние выявленных дефектов строительных конструкций, правильно ли принята расчетная схема.

Если при поверочных расчетах ошибок не сделано, то не имеется достаточных оснований считать состояние конструкций аварийным. В зависимости от вида конструкции и выявленных дефектов в ряде случаев можно признать такое состояние конструкций предаварийным .

В третьем случае нужно еще раз обследовать конструкцию и, если при этом не будет выявлено признаков аварийности, то не появится и оснований для утверждения об аварийном состоянии конструкции. Очень часто встречаются случаи, когда разрушающая нагрузка значительно превосходит несущую способность конструкции, подсчитанную по действующим нормам.

Следует отметить, что правильность утверждения об аварийном состоянии конструкции в очень сильной степени зависит от квалификации лица, делающего такое заключение.

В ряде пособий, инструкций по обследованию строительных конструкций рекомендуется при снижении несущей способности конструкции более чем на 50% считать такое состояние конструкций аварийным или даже полным разрушением. По этому поводу следует заметить, что аварийное состояние зависит не только от несущей способности конструкции (степени снижения предусмотренной проектом несущей способности), но и от усилий, вызванных внешним воздействием. Что касается обрушения конструкции, то оно может произойти и при меньшем снижении ее несущей способности. Когда конструкция обрушилась, то она полностью исчерпала свою фактическую несущую способность.

2. Признаки аварийного состояния грунтового основания

Аварийным состоянием грунтового основания является такое его состояние, когда конструкции здания или сооружения, опирающиеся на это основание, находятся в аварийном состоянии по причине неудовлетворительной работы основания.

Следовательно, об аварийности грунтового основания судят по состоянию конструкций, опирающихся на него.

Нормы проектирования оснований зданий и сооружений /32/ ограничивают относительную разность осадок, среднюю и максимальную осадку фундаментов. При превышении этих деформаций предельных значений в конструкциях, опирающихся на основание, следует ожидать появление трещин. Однако не всегда при этом наступает аварийное состояние конструкций зданий и сооружений. Во многих случаях происходит лишь нарушение нормальных условий эксплуатации.

Естественное основание, если исключить стихийные бедствия (землетрясение, оползни), может прийти в аварийное состояние в случаях, когда:

— при проектировании здания или сооружения неправильно оценены прочностные и деформативные свойства грунтов основания;

— нарушена технология котлованных работ;

— допущено замораживание пучинистых грунтов;

— нарушены правила эксплуатации зданий и сооружений.

В качестве примера, когда нарушение естественной структуры грунтового основания привело к аварийному состоянию части надземных конструкций можно привести возведение жилого пятиэтажного крупнопанельного дома в Ленинградской области. При отрывке котлована была повреждена водопроводная магистральная труба, и часть котлована, отрытого в суглинке, долгое время была залита водой, что привело к сильному переувлажнению грунтов. После возведения здания произошло выпирание грунтов из-под подошвы фундаментов с разрушением пола подвала. Три секции дома, построенные на разжиженном грунте, просели и оторвались от двух ранее возведенных секций. Ширина трещин вверху здания достигла 4 см (рис. 1). Армированный пояс, предусмотренный проектом в связи с неоднородностью основания, при этом разорвался. В целом это здание нельзя было признать аварийным, так как деформации основания стабилизировались и обрушения здания не произошло.

Рис. 1. Схема деформации крупнопанельного жилого дома при сильной неравномерной деформации грунтового основания в результате его замачивания:

1 — скальный грунт; 2 — суглинок; 3 — поврежденная водопроводная труба; 4 — трещина.

Примером достижения аварийного состояния надземных конструкций в результате промораживания пучинистых грунтов могут служить деформации надземной части двухэтажного кирпичного жилого дома в период строительства в Пушкине под Ленинградом. Строительство дома велось в зимний период. Окна подвала не были остеклены. Засыпанный в подвал керамзитовый гравий прикрыл основания фундаментов у наружных стен. Внутренние продольные стены имели фундамент, заглубленный относительно пола подвала всего на 50 см. Грунт под этими стенами промерз, произошло его пучение. В результате дом раскололся вдоль на две части. Ширина трещины на верху торцевых стен достигла 8…10 см. В данном случае дом в целом не находился в аварийном состоянии. Только участие продольных внутренних стен под перемычками можно было считать аварийным, и так как при дальнейшем развитии деформаций пучения появлялась возможность обрушения перемычек и перекрытий, опертых на них. После восстановления в летнее время жесткости стен путем установки тяжей и заделки трещин, а также утепления подвала к следующей зиме следов последствий морозного пучения основания не осталось. Если бы здание осталось с неутепленным к следующей зиме подвалом, то вполне реально появилась бы опасность обрушения участков стен.

При реконструкции здания часто устраивают эксплуатируемые технические подвалы вместо существующих ранее полупроходных подполий. При этом обычно углубляют подвал так, что расстояние между подошвой фундамента и поверхностью пола подвала составляет менее 50 см, а иногда подошва оказывается и выше пола подвала.

В последнем случае всегда наступает аварийное состояние грунтового основания. Если отметка пола подвала приближается к отметке подошвы фундамента на расстояние менее 50 см, то необходимо сделать расчет основания по несущей способности (по первой группе предельных состояний), т.е. проверить основание на возможность выпирания грунтов из-под подошвы фундаментов.

3. Признаки аварийного состояния фундаментов

Аварийное состояние фундаментов наступает из-за неудовлетворительной работы грунтового основания или из-за недостаточной прочности тела фундаментов.

При неудовлетворительной работе грунтового основания в фундаменте образуются сквозные трещины, они обычно сильно раскрыты, редко расположены, пересекают фундамент по всей высоте и заходят в стены.

Эти трещины не всегда приводят к аварийному состоянию надземных конструкций. Трещины вызывают перераспределение усилий по длине фундаментов, что может привести к перегрузке отдельных участков фундаментов и их разрушению. Это обычно сопровождается и местными разрушениями тела фундамента у перемычек над проемами. В местах перегрузки образуются слабо раскрытые часто расположенные вертикальные трещины и наблюдается вертикальное расслоение тела фундамента. Последнее определяется при простукивании вертикальных поверхностей фундаментов. В местах расслоения звук при простукивании глухой. Такое состояние участков фундаментов следует считать аварийным .

При недостаточной прочности тела фундаментов в них также появляются часто расположенные слабо раскрытые трещины и наблюдается вертикальное расслоение. Это аварийное состояние.

Появление трещин в стенках фундаментов стаканного типа под отдельные колонны, отсутствие должного омоноличивания стыка колонны с фундаментом следует признать аварийным состоянием фундамента, так как в этом случае не обеспечивается предусмотренная проектом заделка колонны в фундаменте, что приводит к увеличению усилий в отдельных элементах каркаса. В практике обследования имеется случай, когда в полностью смонтированном двухэтажном каркасном здании заделка колонн в фундамент осуществлялась только с помощью временных деревянных клиньев без бетона омоноличивания.

При реконструкции здания, когда производят углубление подвалов, не всегда обращают внимание на конструкцию фундаментов. В домах постройки прошлых веков часто нижняя часть фундамента выполнялась из камней округлой формы в распор со стенками траншеи без применения связующего раствора. Углублять пол при этом ниже верха такой кладки недопустимо.

При реконструкции двухэтажного дома в Ленинградской области, имевшего подобный фундамент, вместо полупроходного подполья решили сделать эксплуатируемый подвал. При этом на большую высоту обнажили кладку из камней округлой формы. Камни начали выпадать из кладки фундамента. Стены, опирающиеся на этот фундамент, получили большие деформации, перекрытия просели, перегородки упали. Вовремя не были приняты меры для укрепления стен и фундаментов, участки стен начали обрушаться, и здание пришлось разобрать полностью. В данном случае первый же вывалившийся из фундамента камень был достаточно достоверным признаком аварийного состояния фундамента. От момента вывала первых камней до обрушения стен прошло несколько лет.

4. Признаки аварийного состояния железобетонных конструкций

В соответствии с положением норм проектирования железобетонных конструкций /35/ предельное состояние по прочности наступает в сечении сжатых, сжатоизогнутых и изгибаемых железобетонных элементов тогда, когда деформации в наиболее сжатых волокнах достигают предельных значений. Это считается разрушением сечения элемента. В полностью растянутых сечениях предельное состояние наступает тогда, когда напряжение в арматуре достигает расчетных сопротивлений арматуры растяжению.

В статически определяемых изгибаемых, внецентренно сжатых и внецентренно растянутых элементах при больших эксцентриситетах достижение напряжений в растянутой арматуре значений расчетных сопротивлений (физического или условного предела текучести) неминуемо приведет к разрушению сечения элемента при небольшом увеличении нагрузки.

В статически неопределяемых элементах в этом случае произойдет образование пластического шарнира, что вызовет перераспределение усилий между опорными и пролетными сечениями элемента.

Отсюда можно сделать вывод, что появление текучести в растянутой арматуре статически определяемых элементов является аварийным состоянием (рис. 2). В статически неопределяемых конструкциях предельное состояние наступает тогда, когда начнет разрушаться сжатая зона бетона (рис. 3). О достижении растянутой арматурой предела текучести можно судить по ширине раскрытия трещин на уровне арматуры.

Рис. 2. Схема трещин в статически определяемом изгибаемом железобетонном элементе:

1 — нормальная трещина, в которой арматура достигла предела текучести; 2 — наклонная трещина;

3 — продольная трещина в сжатой зоне элемента.

Рис. 3. Схема трещин в растянутой и сжатой зонах в статически неопределяемом

изгибаемом железобетонном элементе:

1 — нормальные трещины; 2 — наклонные трещины; 3 — продольные трещины в сжатой зоне элемента.

Если пренебречь растяжимостью бетона, то раскрытие трещин будет равно абсолютному удлинению арматуры на участке между трещинами

Относительные деформации арматуры при достижении предела текучести можно принять для арматуры, имеющей физический предел текучести:

из стали класса А-I = 0,0011;

из стали класса А-II = 0,0019;

из стали класса А-III = 0,0028.

Для арматуры, не имеющей физического предела текучести, относительные деформации при достижении условного предела текучести можно вычислить по формуле

Тогда для арматуры из стали класса А-IV = 0,0032 ; класса A-V = 0,0037 ; класса B-II = 0,0048 ; класса К-7 = 0,0037 .

При таком подходе к решению поставленной задачи раскрытие трещин, соответствующее достижению предела текучести в арматуре, можно представить в виде следующей таблицы.

Таблица 1

Раскрытие трещин при достижении

в арматуре предела текучести, мм

Классы стали Расстояние между трещинами ,мм
50 100 150 200 250
A-I 0,06 0,1 0,2 0,2 0,3
A-II 0,1 0,2 0,3 0,4 0,5
A-III 0,1 0,2 0,4 0,5 0,6
A-IV 0,2 0,3 0,4 0,6 0,7
A-V 0,2 0,3 0,5 0,7 0,8
A-VI 0,2 0,4 0,6 0,9 1,1
B-II 0,2 0,4 0,6 0,9 1,1
Bp-II 0,2 0,4 0,6 0,8 1,0
K-7 0,2 0,4 0,6 0,8 1,0

Таким образом, чтобы судить о том, достигла ли арматура предела текучести, нужно знать не только раскрытие трещин, но и расстояние между ними. Следует обратить внимание на то, что при малых расстояниях между трещинами текучесть в арматуре будет наблюдаться при раскрытии трещин значительно меньшем, чем предусмотрено Нормами /35/ из условия сохранности арматуры от коррозии.

При выяснении вопроса о достижении предела текучести в напряженной арматуре (поперечных стержнях, хомутах), учитывая, что наклонные трещины обычно располагаются под углом 45° к оси элемента, значение раскрытия трещин в табл. 1 следует умножить на коэффициент 0,7. За расстояние между трещинами в этом случае следует принимать расстояние по перпендикуляру к оси элемента между двумя соседними трещинами или (если трещина одна) длину поперечного стержня.

О достижении предельных деформаций в сжатой зоне бетона судят по появлению трещин, параллельных оси элемента (рис. 2 и 3), и отслоению в этой зоне лещадок.

Если наклонная трещина у свободной опоры элемента выходит на растянутую грань и раскрытие трещины превысило 0,5 мм, то это свидетельствует о том, что произошло продергивание продольной арматуры на опоре. Если одновременно появились продольные трещины в бетоне над концом наклонной трещины, то наступило аварийное состояние конструкции в связи с ее разрушением по наклонному сечению (рис. 4).

Трещины в бетоне вдоль продольной растянутой арматуры могут образоваться по следующим причинам:

— коррозия арматуры, сопровождающаяся увеличением ее диаметра;

— выпрямление арматурных стержней, первоначально имеющих изгиб;

— продергивание арматуры на свободной опоре.

Рис. 4. Схема разрушения железобетонного элемента по наклонному сечению

из-за продергивания арматуры на свободной опоре:

1 — продольные трещины в сжатой зоне элемента; 2 — наклонная трещина;

3 — продольная растянутая арматура; 4 — поперечная арматура.

Во всех трех случаях нарушается сцепление арматуры с бетоном, что увеличивает деформативность элемента и снижает его несущую способность. Об аварийном состоянии элемента можно говорить в том случае, если при этом раскрытие нормальных и наклонных трещин превышает указанные в табл. 1 и имеются продольные трещины с образованием лещадок в сжатой зоне бетона.

При коррозии высокопрочной арматуры в предварительно напряженных железобетонных конструкциях появляется опасность внезапного хрупкого разрушения конструкции из-за обрыва арматуры. Поэтому наличие коррозии высокопрочной арматуры является признаком аварийного состояния конструкции.

Продольные трещины вдоль сжатой арматуры свидетельствуют о том, что либо произошла коррозия арматуры, либо ее стержни начали терять устойчивость из-за чрезмерно большого расстояния между поперечной арматурой (рис. 5). В обоих случаях происходит снижение несущей способности элемента не только за счет изменения усилий, воспринимаемых сжатой арматурой, но и за счет уменьшения сжатой зоны бетона. Такое состояние является аварийным .

Рис. 5. Схема разрушения в сжатой зоне бетона при потере устойчивости стержнями сжатой арматуры:

1 — продольная сжатая арматура; 2 — поперечная арматура.

Наличие трещин в консоли колонны обычно является признаком большой перегрузки консоли и грозит обрушением конструкции, опирающейся на нее. Поэтому колонна с трещинами в консолях является аварийной . Отклонение колонны от вертикали, допущенное в процессе монтажа, не всегда служит показателем ее неудовлетворительной работы. При надежной связи отклонившейся колонны с перекрытиями и хорошим омоноличиванием последних ее деформация в горизонтальном направлении возможна только при деформации всего температурно-усадочного блока, т.е. дополнительное усилие от наклона колонны будет распределяться между всеми колоннами температурно-усадочного блока /6, 7, 12, 14/.

Если же отклонение колонны от вертикали произошло в процессе эксплуатации здания и сопровождается неравномерной осадкой фундаментов, то это может свидетельствовать о приближении аварии здания и требует немедленного освидетельствования состояния всех примыкающих к отклоненной колонне конструкций. Нарушение целостности стыков сопряженных элементов является признаком аварийного состояния отклонившейся конструкции и элементов, опирающихся на нее.

В процессе эксплуатации здания или сооружения железобетонные конструкции могут получить различные повреждения. Чаще всего повреждения бывают механического или физико-химического характера.

В результате механических ударов по поверхности конструкции могут произойти местные повреждения бетона и арматуры. Сколы бетона наиболее опасны в сжатой зоне элемента. При ударе возможны повреждения арматуры в виде ее деформации или уменьшения размеров поперечного сечения.

Если при ударе образовалось искривление арматурного стержня с отслоением защитного слоя, то происходит снижение предельного усилия, которое может воспринять деформативный стержень.

В растянутом стержне предельное усилие можно вычислить /6, 17, 19, 20/ по формуле

Рис. 6. Зависимость относительного усилия в стержне

от относительного эксцентриситета .

Рис. 7. Зависимость степени снижения прочности арматурного стержня

от относительной глубины повреждения

Если арматурный стержень при ударе получил одновременно и искривление с потерей связи с бетоном, и дефект в виде уменьшения размера поперечного сечения в плоскости, перпендикулярной плоскости изгиба, то в растянутом стержне предельное усилие можно определить из выражения

Вычислив несущую способность элемента с учетом предельного расчетного усилия в поврежденном арматурном стержне, сравнив ее с расчетным усилием в элементе и учтя наличие и характер трещин в бетоне, принимают решение о возможности признания конструкции аварийной.

Проведенные эксперименты показали, что при наличии одностороннего повреждения растянутой арматуры, разрушение железобетонных элементов происходит с разрывом поврежденной арматуры при относительно небольших деформациях элементов. Отсюда следует вывод: односторонние повреждения растянутой арматуры свидетельствуют об аварийном состоянии железобетонной конструкции.

При воздействии агрессивной среды происходит изменение прочности бетона, местное его разрушение, коррозия арматуры.

Если при повреждении железобетонных конструкций появляются рассмотренные выше признаки, свидетельствующие о большой их перегрузке (трещины, отслоение лещадок в сжатой зоне элементов и др.), то поврежденные конструкции следует считать аварийными .

В некоторой технической литературе предлагается относительный прогиб обычных изгибаемых железобетонных элементов, превышающий 1/150 пролета, считать признаком аварийного состояния конструкции.

В других источниках, например в /29/, аварийное состояние конструкции предлагается считать при относительном изгибе, большем или равном 1/50.

Однако сам по себе большой прогиб железобетонных элементов свидетельствует лишь о их малой изгибной жесткости.

О близости к аварийному состоянию изгибаемых железобетонных элементов можно судить по значениям относительного прогиба, соответствующим достижению предельного состояния по прочности, который определяется по формуле

При кратковременном нагружении значение можно вычислить по формуле

Из рис. 8 видно, что достижение предельного состояния первой группы в нормальном сечении может происходить при значениях относительных прогибов, значительно отличающихся от 1/150, как в одну, так и в другую сторону. Таким образом, для использования критерия относительного прогиба железобетонных конструкций при установлении их аварийного состояния следует производить каждый раз расчет значения относительного прогиба исходя из конкретных условий (пролета и схемы изгибаемого элемента, классов бетона и арматуры, коэффициента армирования).

Рис. 8. Зависимость относительного изгиба железобетонного изгибаемого элемента от отношения пролета l к рабочей высоте сечения при классе бетона В20, классе арматуры А-III и =0,015: 1 — для однопролетной свободно опертой балки и кратковременного действия нагрузки; 2 — то же для длительного действия нагрузки; 3 — для консольной балки и кратковременного действия нагрузки.

В ряде случаев, когда нет видимых признаков перегрузки железобетонных конструкций, они могут находиться в предаварийном состоянии. Это бывает тогда, когда не обеспечивается устойчивость конструкции.

Сюда можно отнести пропуски или некачественное выполнение вертикальных связей, отсутствие или непроектное выполнение сварки закладных деталей. В этих случаях даже при незначительном увеличении нагрузок может произойти обрушения конструкций.

В последнее время участились случаи обрушения балконов и козырьков.

Если балконная плита или козырек железобетонные, то признаки их аварийного состояния связаны с дефектами как растянутой арматуры, так и сжатой зоны бетона.

При неудовлетворительном состоянии или отсутствии гидроизоляции балконных плит и козырьков в результате многократного воздействия атмосферных осадков и перепадов температуры происходит разрушение верхней и нижней зоны плит, что вызывает коррозию арматуры и бетона.

При повреждении коррозией арматурных стержней более чем на 30% следует считать состояние плит балконов и козырьков аварийным .

При недостаточной плотности бетона, увлажнении его из-за плохой гидроизоляции плиты и попеременном замораживании и оттаивании происходит быстрое разрушение нижней поверхности плиты. При этом уменьшается рабочая высота сечения плиты. Разрушение более чем на 30% по глубине бетона плиты является признаком ее аварийного состояния.

5. Признаки аварийного состояния каменных конструкций

О большой перегрузке элементов каменной кладки можно судить по наличию в них трещин. Трещины могут быть видимые, выходящие на поверхность кладки, и невидимые — внутреннее расслоение. Однако не все трещины в кладке свидетельствуют о ее перегрузке. Трещины в каменной кладке могут появляться также в результате неравномерной осадки фундаментов и температурного воздействия /9, 18, 19, 20/.

При неравномерной осадке фундаментов и температурном воздействий в результате перераспределения усилий между элементами кладки может произойти перегрузка отдельных элементов с образованием в них трещин силового происхождения.

Наступление аварийного состояния каменной кладки в связи с ее перегрузкой соответствует третьей стадии напряженно-деформированного состояния кладки. Эта стадия характеризуется появлением часто расположенных вертикальных трещин, имеющих небольшое раскрытие и проходящих через вертикальные швы кладки и несколько рядов камня (рис. 9). Трещины, выходящие на наружную поверхность каменного элемента, обычно сопровождаются внутренним расслоением кладки. Это можно установить при простукивании каменного элемента. Если есть его внутреннее расслоение, то при ударе по поверхности кладки слышен глухой звук. Как говорят строители, кладка при этом «бухтит».

Рис. 9. Схема третьей стадии напряженно-деформированного состояния каменной кладки.

Внутреннее расслоение кладки часто приводит к выпучиванию наружной версты кладки.

Рекомендации /30/ предлагают считать недопустимым отклонение от вертикали элемента каменной кладки более чем на 1/3 высоты сечения элемента. При учете этих рекомендаций следует иметь в виду, что если отклонение от вертикали допущено при выполнении кладки, то горизонтальная составляющая усилия, возникающая от этого отклонения, будет гаситься связью отклонившегося элемента с другими участками кладки и перекрытиями. При таком отклонении от вертикали каменного элемента следует произвести его расчет с учетом связи с примыкающими элементами кладки и перекрытиями /9, 19, 20/. Если расчет покажет удовлетворительное состояние кладки, то не появится основания считать такой элемент аварийным.

При отклонении участков стены или столба от вертикали с отрывом его от соседних элементов стен, вызванном неравномерной осадкой фундаментов, в случае, когда стабилизации осадки не произошло, появляется опасность обрушения отколовшихся элементов каменной кладки. Это является аварийным состоянием кладки.

Опасным является появление трещин в кладке под концами балок, прогонов, перемычек больших пролетов или под опорными подушками /рис. 10/. При этом появляется возможность обрушения элемента, опирающегося на кладку. Это аварийное состояние элемента.

При недостаточном опирании плит перекрытий на стены может произойти скол кладки под концом плиты, а также продергивание арматуры плиты на опоре. При отсутствии видимых признаков разрушения кладки под концом плиты и наклонных трещин в плите состояние плиты следует считать предаварийным . В случае увеличения нагрузки на плиту она может обрушиться.

Рис. 10. Схема разрушения каменной кладки под опорной подушкой:

1 — балка; 2 — опорная подушка; 3 — наклонная трещина

Трещины в кладке, вызванные неравномерной осадкой фундаментов, температурным воздействием, а также отсутствие перевязок продольных и поперечных стен приводят к снижению пространственной жесткости здания. Это предаварийное состояние здания. В случае появления значительных горизонтальных усилий может произойти обрушение конструкций. Поэтому пространственную жесткость здания всегда нужно восстановить /1, 9, 18/.

Известны случаи обрушения отдельно стоящих кирпичных стен, не раскрепленных перекрытиями и стенами перпендикулярного направления от действия ветровой нагрузки. Это может произойти при нарушении технологии возведения новых стен или разборки старых.

Рис. 11. Схема наклонных трещин в стеновой панели:

а — в панели без проема; б — в панели с проемом; 1 — трещины

Отслоение и выпадение наружного защитного слоя не может являться признаком аварийного состояния стеновой панели. При разрушении наружного защитного слоя появляется опасность увлажнения стены дождем и снижение ее теплотехнических свойств.

7. Признаки аварийного состояния стальных конструкций

При обнаружении таких дефектов стальных конструкций, как общий и местный изгиб стального элемента, местное ослабление сечения, коррозия стали, для определения состояния стального элемента нужно выполнить расчеты прочности с учетом выявленных дефектов. Методика этих расчетов изложена в /31/.

Однако в ряде случаев и без выполнения поверочных расчетов можно сделать вывод о наличии аварийного состояния стальных конструкций. Наличие трещин в сварных швах, в околошовной зоне, поперечных трещин в растянутых элементах, а также трещин, идущих от заклепочных отверстий, является бесспорным признаком аварийного состояния конструкций.

Часто причиной аварий стальных конструкций является потеря местной устойчивости в узлах сопряжения.

На рис. 12,а изображены схемы образования местного выпучивания стенки сварного двутавра в сопряжении стойки рамы с ригелем. В местах перелома пояса сварного двутавра из-за концентрации напряжений в тонкой стенке произошла местная потеря устойчивости стенки, которая привела к обрушению рам спортивного сооружения. Аналогичное явление произошло и в стальных рамах складского здания (рис. 12,б).

Этой аварии не произошло бы, если бы в местах перелома пояса были установлены ребра жесткости /20/.

В Ленинграде произошла авария структурного покрытия спортивного сооружения из стальных труб и фасонного проката /20/. Причиной аварии была потеря устойчивости фасонки у верхнего пояса структуры из-за большого расстояния между элементом решетки и верхним поясом (рис. 12,в). При монтаже структуры был допущен изгиб фасонки, что усугубило ее сложное напряженное состояние.

Отсюда можно сделать вывод, что любая местная деформация в узлах сопряжения стальных элементов является признаком аварийного состояния конструкции.

Иногда при устройстве внутренних стен и перегородок они пересекают конструкции перекрытий и покрытий без оставления необходимых зазоров в местах их пересечений (рис. 13).

Рис. 12. Схема узлов примыкания элементов стальных конструкций, приведших к авариям:

а — ригеля и колонны спортивного здания; б — ригеля и колонны складского здания;

в — раскоса к горизонтальным верхним элементам структурного покрытия;

1 — сосредоточение усилия, действующее на стенку элементов двутаврового сечения;

2 — проектные ребра жесткости; 3 — ребра жесткости, обеспечивающие местную устойчивость стенок элементов;

4 — трубчатые раскосы; 5 — верхние горизонтальные элементы структурного покрытия;

6 — нижняя грань фасонки по проекту КМ; l — большая свободная длина фасонки

Если стены или перегородки опираются на фундаменты, не связанные с фундаментами несущих конструкций, на которые оперты конструкции перекрытий и покрытий, то при разности осадок фундаментов происходит либо зависание стен (перегородок) на конструкции перекрытий (покрытий), либо последние опираются на эти стены и работают в нерасчетном режиме. Это может привести к аварии конструкций перекрытия и покрытия.

Рис. 13. Схема пересечения стропильной фермы с перегородкой:

а — правильное решение пересечения; б — неправильное решение пересечения;

1 — плита перекрытия; 2 — пояса фермы; 3 — перегородка; 4 — отверстия в перегородке в местах пересечения ее с поясами фермы, заполненные эластичным материалом; 5 — зазор между перегородкой и плитой покрытия

Так же, как и в отношении железобетонных изгибаемых элементов, нельзя судить об аварийном состоянии стальных балок только по какому-либо фиксированному значению относительного изгиба. Необходимо принимать во внимание и пролет и высоту сечения балки.

При закреплении верхнего пояса от смещения в горизонтальной плоскости предельное усилие, которое может воспринять нормальное сечение балки, выражается /37/ формулой

К высоте сечения балки

Рис. 14. Зависимость относительного прогиба стальной балки от отношения пролета l к высоте сечения h при достижении нормальным сечением предельного состояния по прочности:

1 — для однопролетной свободно опертой балки; 2 — для консольной балки

8. Признаки аварийного состояния деревянных конструкций

Обрушение деревянных конструкций чаще всего происходит из-за низкого качества стыков этих элементов. Бесспорным признаком аварийного состояния растянутых стыков является наличие продольных трещин у нагелей и гвоздей (рис. 15). При этом происходит исключение из работы нагелей или гвоздей, рядом с которыми возникли трещины.

Рис. 15. Схема трещин у нагелей в растянутом стыке деревянных элементов,

свидетельствующих об опасности разрушения стыка; 1 — трещины

Опасным для конструкции является скалывание площадки в лобовой врубке (рис. 16). В этом случае все усилие в примыкающем элементе будет передаваться на стяжной болт, это усилие вызовет изгиб болта и смятие древесины в обоих сопряженных элементах.

Рис. 16. Скалывание площадки в лобовой врубке, могущее привести к обрушению всей конструкции:

1 — линия скола; 2 — стяжной болт

При отсутствии стяжного болта в лобовой врубке состояние деревянной конструкции следует считать предаварийным , так как в случае скалывания по какой-либо причине площадки врубки произойдет обрушение конструкции.

Так же, как и для конструкций из других материалов, о напряженном состоянии деревянных элементов можно судить по их прогибам. Относительные прогибы деревянных балок при достижении в нормальных сечениях предельного состояния первой группы выражаются уравнением

14 МПа и аварийном состоянии деревянного изгибаемого элемента.

Древесина на сжатие работает упругопластически, а на растяжение упруго /24/. Перед разрушением изгибаемого деревянного элемента в его сжатой зоне древесина работает пластически, а в растянутой зоне деформации в основном упругие. Разрушение нормального сечения изгибаемого элемента происходит при разрыве его растянутых волокон. Признаком приближающегося разрушения может служить начало потери устойчивости сжатых волокон, сопровождающиеся выпучиванием древесины в сжатой зоне (на сжатой грани образуются складки).

Если несущая способность подвергшегося гниению деревянного элемента, подсчитанного за вычетом пораженной древесины, оказалась недостаточной, то такой элемент следует считать аварийным.

Заключение

Описанию аварий строительных конструкций посвящена обширная литература. При этом главное внимание уделяется причинам аварий и их последствиям. Признаки аварийного состояния, как правило, рассматриваются недостаточно подробно. Не изучаются признаки аварийного состояния конструкций и в технических учебных заведениях. В связи с этим инженерно-технические работники, даже встретившись с явными признаками аварийности конструкций зданий и сооружений, не всегда адекватно реагируют на них.

Это может привести к аварии здания или сооружения, которую можно было бы легко предотвратить.

Литература

1. Алексеев В.К., Гроздов В.Т., Тарасов В.А. Дефекты несущих конструкций зданий и сооружений, способы их устранения. — М.: Минобороны, 1982. — 178 с.

2. Анализ причин аварий строительных конструкций. Выпуск 1. — М.: Изд-во по строительству, 1968 — 224 с.

3. Андреев С.А. Предупреждение аварий и повреждений зданий. — М.: Изд-во министерства коммунального хозяйства РСФСР, 1947. — 96 с.

4. Бедов А.И., Сапрыкин В.Ф. Обследование и реконструкция железобетонных и каменных конструкций эксплуатируемых зданий и сооружений. — М.: Изд-во АСВ, 1995.- 192 с.

5. Вейц Р.И. Предупреждение аварий при строительстве зданий. -Л.: Стройиздат, 1984. -145 с.

6. Гроздов В.Т. Дефекты основных несущих железобетонных конструкций каркасных многоэтажных промышленных и общественных зданий и методы их устранения /СПбВВИСУ. — СПб., 1993.-192 с.

7. Гроздов В.Т. Дефекты сборных железобетонных несущих конструкций одноэтажных каркасных промышленных зданий и методы их устранения /СПбВВИСУ. — СПб., 1993.-168 с.

8. Гроздов В.Т. Дефекты конструкций крупнопанельных зданий, снижающие несущую способность зданий, и их устранение /СПбВВИСУ. — СПб., 1993.-96 с.

9. Гроздов В.Т. Дефекты каменных зданий и методы их устранения /СПбВВИСУ. — СПб., 1994.-146 с.

10. Гроздов В.Т. Дефекты фундаментов зданий и сооружений, способы их устранения и усиление оснований и фундаментов /СПбВВИСУ. — СПб., 1994-106 с.

11. Гроздов В.Т. Поверочные расчеты элементов строительных конструкций при техническом обследовании зданий и сооружений /СПбВВИСУ. — СПб., 1994-88 с.

12. Гроздов В.Т. Приближенный способ учета влияния некоторых дефектов монтажа элементов железобетонных каркасов на усилия в колоннах // Известия вузов: Строительство и архитектура. — 1990. — N2. — С.12…15.

13. Гроздов В.Т. Определение дополнительных усилий в колоннах многоэтажных каркасных зданиях при смещении ригеля из плоскости рамы // Известия вузов: Строительство и архитектура. — 1990. — N12. — С. 3…5.

14. Гроздов В.Т. Влияние некоторых дефектов монтажа железобетонных каркасов одноэтажных промышленных зданий на усилия в колоннах //Известия вузов: Строительство и архитектура. — 1991. — N8. — С.3…5.

15. Гроздов В.Т. Дефекты стыков колонн в каркасах серии ИИ-04 и 1.020-1 и влияние их на несущую способность колонн // Известия вузов: Строительство. — 1991. — N10. — С.3…5.

16. Гроздов В.Т. Дефекты стыков стеновых панелей и влияние их на несущую способность крупнопанельных зданий // Известия вузов: Строительство. — 1993. — N1. — С. 71…72.

17. Гроздов В.Т. Влияние несоосности выпусков арматуры из ригелей и колонн в многоэтажных промышленных каркасных зданиях серии ИИ-20/70 и 1.420-12 на несущую способность ригелей //Перспективы развития строительных конструкций: Сб. статей / ЛДНТП. — СПб., 1991. — С.66…69.

18. Гроздов В.Т. О разрушении стены от воздействия сезонного периода температуры наружного воздуха // Известия вузов: Строительство. — 1997. — N12. — С.8…11.

19. Гроздов В. Т. Техническое обследование строительных конструкций зданий и сооружений. /ВИСИ. — СПб, — 1998. — 204 с.

20. Гроздов В.Т. Дефекты строительных конструкций и их последствия /ВИТУ. — СПб., 1998. — 148 с.

21. Гроздов В.Т., Полянский М.М. Об одном недостатке конструкций ребристых плит для перекрытий многоэтажных промышленных зданий // Известия вузов: Строительство и архитектура. — 1990. — N7.С.5 и 6.

22. Гроздов В.Т., Руденко В.В. Учет пространственной жесткости каркаса и оценка влияния отклонений колонн от проектного положения // Проектирование и расчет строительных конструкций: Сб. статей / ЛДНТП. — Л., 1990. — С.98…104.

23. Исследование влияния качества изготовления, монтажа и эксплуатации железобетонных конструкций на их несущую способность //Сб. научных трудов НИИЖБ Госстроя СССР. — М., 1986. — 99 с.

24. Отрешко А.М. Строительные конструкции. Ч. II: Деревянные конструкции. — М.: Трансжелдориздат, 1948. — 411 с.

25. Пособие по проектированию жилых зданий /ЦНИИЭП Госкомархитектура. — М.: Стройиздат, 1989. Вып. 3: Конструкция жилых зданий (к СНиП 2.08.01-85). — 304 с.

26. Предупреждение деформаций и аварий зданий и сооружений /Под ред. В.А. Лисенко. — Киев: Будiвельник, 1984. — 120 с.

31. Реконструкция промышленных предприятий: Справочник строителя /Под ред. В.Л. Топчия, Р.А. Гребенника. — М.: Стройиздат, 1990. Т.1. — 591 с.

32. Ройтман А.Г. Предупреждение аварий жилых зданий. — М.: Стройиздат, 1990. — 240 с.

33. Сендеров Б.В. Аварии жилых зданий. — М.: — Стройиздат, 1991. — 216 с.

34. СНиП 2.02.01 — 83. Основание зданий и сооружений. — М.: Стройиздат, 1983. — 40 с.

35. СНиП 2.03.01 — 84*. Бетонные и железобетонные конструкции. — М.: Стройиздат, 1989. — 80 с.

36. СНиП II-22-81. Каменные и армокаменные конструкции. — М.: Стройиздат, 1983. — 40 с.

37. СНиП II-23-81*. Стальные конструкции. — М.: Стройиздат, 1989. — 96 с.

38. СНиП II-25-80. Деревянные конструкции. — М.: Стройиздат, 1983. — 31 с.

39. СНиП 2.01.07-85. Нагрузки и воздействия. — М.: Стройиздат, 1987. — 36 с.

40. Физдель И.А. Дефекты в конструкциях, сооружениях и методы их устранения. — М.: Стройиздат, 1987. 336 с.

41. Шкинев А.Н. Аварии в строительстве. — М.: Стройиздат, 1984. — 319 с.

Электронный текст документа

подготовлен ЗАО «Кодекс» и сверен по

материалам, предоставленным проф. Гроздовым В.Т.

Таблица Б.2 - Признаки аварийного состояния элементов конструкции здания

Тип конструкции

Признаки аварийного состояния

Железобетонные конструкции

Трещины в конструкциях, испытывающих знакопеременные воздействия, трещины, в том числе пересекающие опорную зону анкеровки растянутой арматуры; разрыв хомутов в зоне наклонной трещины в средних пролетах многопролетных балок и плит, а также слоистая ржавчина или язвы, вызывающие уменьшение площади сечения арматуры более 15 %; выпучивание арматуры сжатой зоны конструкций; деформация закладных и соединительных элементов; отходы анкеров от пластин закладных деталей из-за коррозии стали в сварных швах, расстройство стыков сборных элементов с взаимным смещением последних; смещение опор, приводящее к уменьшению площади опирания на них сборных элементов; значительные (более 1/50 пролета) прогибы изгибаемых элементов при наличии трещин в растянутой зоне с раскрытием более 0,5 мм; разрыв хомутов в зоне наклонной трещины; разрыв отдельных стержней рабочей арматуры в растянутой зоне; раздробление бетона и выкрошивание заполнителя в сжатой зоне. Снижение прочности бетона в сжатой зоне изгибаемых элементов и в остальных участках более 30 %. Площадь опирания сборных элементов меньше требований норм и проекта. Существующие трещины, прогибы и другие повреждения свидетельствуют об опасности разрушения конструкций и возможности их обрушения.

Наклонная трещина раскрытием более 0,5 мм у свободной опоры элемента и наличие признаков появления продольной трещины над концом наклонной трещины в сжатой зоне.

Трещины в консоли колонны с любым раскрытием.

Отклонение колонны от вертикали более допускаемого нормами и/или нарушение целостности стыков сопряженных элементов.

Пропуски или некачественное выполнение вертикальных связей, отсутствие или непроектное выполнение сварки закладных деталей.

Выход панели крупнопанельного здания из плоскости стены более допускаемого нормами.

Трещины в горизонтальных и вертикальных швах по периметру панели крупнопанельных зданий.

Трещины в панелях крупнопанельных зданий

Каменные конструкции

Сильные повреждения. Большие обвалы в стенах. Размораживание и выветривание кладки на глубину до 40 % толщины. Вертикальные и косые трещины (исключая температурные и осадочные) в несущих стенах и столбах на высоте четырех рядов кладки. Наклоны и выпучивание стен в пределах этажа на 1/3 и более их толщины. Ширина раскрытия трещин в кладке от неравномерной осадки здания достигает 50 мм и более, отклонение от вертикали на величину более 1/50 высоты конструкции. Смещение (сдвиг) стен, столбов, фундаментов по горизонтальным швам или косой штрабе. В конструкции имеет место снижение прочности камней и раствора на 30 - 50 % или применение низкопрочных материалов. Отрыв продольных стен от поперечных в местах их пересечения, разрывы или выдергивание стальных связей и анкеров, кренящих стены к колоннам и перекрытиям. В кирпичных сводах и арках образуются хорошо видимые характерные трещины, свидетельствующие об их перенапряжении и аварийном состоянии. Повреждение кладки под опорами ферм, балок и перемычек в виде трещин, разуплотнения со смятием. Раздробление камня или смещение рядов кладки по горизонтальным швам на глубину более 20 мм. Смещение плит перекрытий на опорах более 1/5 глубины заделки в стене.

В кладке наблюдаются зоны длительного замачивания, промораживания и выветривания кладки и ее разрушение на глубину 1/5 толщины стены и более. Происходит расслоение кладки по вертикали на отдельные самостоятельно работающие столбики. Наблюдается полное корродирование металлических затяжек и нарушение их анкеровки.

Горизонтальная гидроизоляция полностью разрушена. Кладка в этой зоне легко разбивается с помощью ломика. Камень крошится, расслаивается. При ударе молотком по камню звук глухой. В конструкциях наблюдаются деформации и дефекты, свидетельствующие о потере ими несущей способности свыше 50 %. Возникает угроза обрушения.

Внутреннее расслоение кладки (глухой звук при ударе по поверхности); то же с выпучиванием наружной версты. Скол кладки под концом плиты

Стальные конструкции

Прогибы изгибаемых элементов более 1/75 пролета. Потеря местной устойчивости конструкций (выпучивание стенок и поясов балок и колонн). Срез отдельных болтов или заклепок в многоболтовых соединениях. Коррозия с уменьшением расчетного сечения несущих элементов до 25 % и более. Трещины в сварных швах или околошовной зоне. Механические повреждения, приводящие к ослаблению сечения до 25 %. Отклонения ферм от вертикальной плоскости более 15 мм. Расстройство узловых соединений от проворачивания болтов или заклепок; разрывы отдельных растянутых элементов; наличие трещин в основном материале элементов; расстройство стыков и взаимных смещений опор

Деревянные конструкции

Прогиб более чем на 0,01 длины пролета.

Наличие продольных трещин у панелей или гвоздей, скалывание площадки в лобовой врубке.

Отсутствие стяжного болта в лобовой врубке.

Выпучивание древесины в сжатой зоне (на сжатой грани образуются складки).

Гниение элементов более 30 %.

Относительный прогиб превышает допустимое значение

Примечания

1 Для отнесения конструкции к аварийной категории достаточно наличия хотя бы одного признака, характеризующего эту категорию.

2 Отнесение обследуемой конструкции к аварийной категории состояния при наличии признаков, не отмеченных в таблице, в сложных и ответственных случаях, должно производиться на основе детальных инструментальных обследований, выполняемых специализированными организациями.

Приложение В

(справочное)

Основные конструктивные решения современных жилых и общественных зданий

1 Характерными особенностями строительства жилых и общественных зданий в настоящее время и ближайшие годы является:

а) усложнение архитектурно-планировочных решений;

б) возведение зданий сложной конфигурации в плане и переменной высоты;

в) уплотнение существующей застройки путем встроек;

г) широкое освоение подземного пространства;

д) застраивание территорий, имеющих неблагоприятные инженерно-геологические условия (намытые территории, болота, бывшие свалки и т.п.);

е) строительство зданий в непосредственной близости от действующих коллекторов водоотведения различной глубины заложения;

ж) повышение этажности зданий.

2 До 1990-х годов застройка жилых кварталов в городе осуществлялась в основном крупнопанельными и кирпичными многоэтажными зданиями, большая часть из которых была возведена по типовым проектам в 1960 - 1990 гг. С середины 90-х годов основным видом строительства жилых зданий являются здания, возводимые по индивидуальным проектам.

3 Высота жилых зданий, как правило, от 9 до 17 этажей с повышением в отдельных случаях до 18 - 24 этажей. В окраинных районах города и в пригородах строятся 2 ... 5-этажные дома коттеджного типа по индивидуальным проектам.

4 Основной конструкцией жилых зданий являются поперечные несущие железобетонные стены и облегченные ограждающие стены. Шаг поперечных стен колеблется от 2,4 до 6,0 м. Часть жилых полносборных зданий, высотой до 14 этажей выполняется с продольными самонесущими наружными керамзитобетонными стенами и внутренними несущими железобетонными. Кирпичные здания строятся различной этажности, как с продольными, так и с поперечными несущими стенами.

Жилые здания со встроенными нежилыми помещениями в нижних и заглубленных этажах часто имеют железобетонный каркас на высоту одного-двух этажей.

Приложение Г

(справочное)

Характеристика конструкций каменных зданий старой застройки

1 Существующие кирпичные жилые и гражданские здания по времени постройки, обуславливающем их конструктивные особенности, подразделяются на две основные группы:

Здания, построенные до 1917 г.;

Здания, построенные в период с 1917 г. до начала массового крупнопанельного домостроения.

В период до 1917 года построены преимущественно 2 - 5-этажные кирпичные здания с несущими наружными стенами и одной внутренней продольной стеной. Редко встречались здания с поперечными несущими стенами либо с двумя продольными внутренними стенами, образующими коридор. Многие из этих зданий в последующем надстроены на 1 - 3 этажа. Кирпичная кладка преимущественно возводилась на медленнотвердеющем известковом растворе.

Общая жесткость таких зданий обеспечивалась продольными и поперечными массивными стенами, включая лестничные клетки. Продольные стены иногда связывались между собой анкерами из полосовой стали. Кроме того, в продольных стенах в некоторых случаях укладывались стальные связи с анкерами в углах и пересечениях стен. Балки перекрытий, как правило, анкеровались в стенах. Все это, особенно медленное нарастание прочности кладки стен, способствовало снижению чувствительности конструкций зданий к неравномерным осадкам.

2 Фундаменты большинства старых зданий - на естественном основании: бутовые или кирпичные, иногда в нижней части из валунов и редко бутобетонные или бетонные.

Под подошву фундаментов старых зданий иногда укладывались лежни из бревен или забивались короткие деревянные сваи длиной 2 - 6 м.

Глубина заложения фундаментов в зависимости от конструктивных либо инженерно-геологических особенностей площадки строительства варьирует от 1,0 до 4,5 м при давлении по подошве фундамента 150 - 450 кПа. Во многих случаях давление по подошве фундаментов старых зданий, особенно надстроенных, превышает значение расчетного сопротивления грунта основания, рассчитанного по СНиП 02.02.01.

3 Для гидроизоляции подвальных помещений и фундаментов с их наружных сторон иногда устраивали замок из перемятой глины. Противокапиллярная гидроизоляция по обрезу фундамента делалась не всегда.

Во многих случаях слой противокапиллярной гидроизоляции стен в настоящее время находится ниже отметки тротуара или отмостки вследствие подсыпки территории и наслоения дорожных покрытий на старые.

4 Наружные стены из кирпича в большинстве случаев возведены на известковом или сложном растворе толщиной в 2,5 кирпича, а внутренние - в 2 кирпича. Лицевые поверхности наружных стен иногда выкладывались из отборного кирпича. В большинстве случаев кирпичная кладка характеризуется наличием забутовки, слабого недообожженного кирпича, перебивок проемов, прогоревших дымовых каналов.

Поднятие культурного слоя, тротуаров и отмосток обусловило поднятие влаги из грунта в стены зданий, что существенно снизило прочность и в ряде случаев привело к разрушению кирпичной кладки цокольных частей зданий и первых этажей. Характерными дефектами стен являются:

Разрушение простенков вследствие малой прочности кладки;

Поверхностное разрушение кладки (выветривание при переувлажнении, замерзании и оттаивании и т. п.);

Разрушение отдельных участков стен на всю толщину;

Прогары и местные разрушения кладки в зонах дымовых каналов;

Отклонение наружных стен от вертикали с отрывом от поперечных стен;

Сырость стен из-за отсутствия противокапиллярной гидроизоляции стен на современной отметке выше тротуара (отмостки).

5 Перекрытия чаще всего состоят из окантованных с черепными брусками бревен с дощатым заполнением и засыпкой из строительного мусора и кирпичного боя.

Подвалы и реже первые этажи во многих зданиях перекрыты кирпичными сводами разной конструкции.

В постройках конца прошлого и начала текущего столетия надподвальные перекрытия выполнялись преимущественно из металлических прокатных балок с бетонным заполнением.

Позднее в общественных и жилых кирпичных зданиях перекрытия иногда возводились из монолитного железобетона и сборных элементов.

6 Период с 1917 года до середины пятидесятых годов характеризуется строительством разнообразных типов каменных зданий.

В годы первых пятилеток и в послевоенные годы жилые дома возводились, как правило, из «подручных» материалов по наиболее простым конструктивным схемам. Это дома со стенами из мелких пустотелых шлакоблоков, монолитного шлакобетона, из кирпичной кладки с воздушным зазором и засыпкой.

Для перекрытий применялись разнообразные материалы. Деревянные перекрытия делались по бревенчатым балкам с черепными брусками, иногда по дощатогвоздевым конструкциям и, реже, по металлическим балкам с применением железобетонных прогонов.

7 В некоторых случаях конструкции фундаментов, перекрытий и перегородок сделаны из монолитного железобетона, особенно в административных зданиях, универмагах, фабриках-кухнях, банях, прачечных и др.

Последующий этап (с конца 40-х годов) характеризуется строительством, как жилых зданий, так и гражданских повышенной капитальности с массовым применением сборных элементов: бетонных фундаментных блоков, сборных железобетонных настилов и балок перекрытий, разгрузочных балок, перемычек, колонн и т.д. В этот же период возводятся здания из крупных кирпичных и шлакобетонных блоков.

Приложение Д

(справочное)

Особенности инженерно-геологических условий территории Санкт-Петербурга

1 Четвертичные отложения в Санкт-Петербурге залегают на неровной поверхности дочетвертичных пород - верхнекотлинских глинах - в северной и центральной части города, и на нижнекембрийских - в южных районах Санкт-Петербурга. Присутствие палеодолин в подземном рельефе кровли коренных пород во многом определяет специфичность разреза четвертичной толщи и ее мощность: вне палеодолин она имеет мощность порядка 30 м, а в тальвеговых зонах палеодолин возрастает до 120 м.

Вне погребенных долин верхнекотлинские глины могут служить надежным опорным горизонтом для свайных фундаментов. При использовании верхнекотлинских и нижнекембрийских глин в качестве основания или среды подземного сооружения следует учитывать их макро- и микротрещиноватость, и как следствие, неоднородность по глубине и простиранию.

В палеодолинах выделяются три толщи моренных образований: наиболее древняя - днепровская, далее вверх по разрезу московская и лужская, которые расчленены водноледниковыми морскими и озерными отложениями. Моренные отложения днепровского и московского оледенения прослеживаются в глубоких погребенных долинах, в том числе под рекой Смоленкой, в районе площади Мужества, местами в долине пра-Невы.

2 В качестве несущего слоя для свайных фундаментов наибольшее практическое значение имеет лужская морена, которая является наиболее выдержанным, четко прослеживающимся по всей территории города верхним горизонтом. Глубина залегания этой толщи меняется от метров до первых десятков метров, местами образования лужской морены выходят на дневную поверхность (в север и южной частях города и локально в центральной зоне вблизи Витебского вокзала).

3 Озерно-ледниковые отложения Балтийского ледникового озера, перекрывающие верхнюю лужскую морену, пользуются широким распространением, за исключением отдельных зон вдоль Невы и Невской губы. Суммарная мощность слоев этих отложений преимущественно составляет 3 - 10 м, в островной части города может достигать 20 м. В разрезе толщи озерно-ледниковых отложений выделяются точные глины, суглинки, супеси, реже пески. Наиболее широко развиты в разрезе породы с ленточной слоистостью. В верхней части разреза ленточные глины постепенно переходят в суглинки и супеси, которые представляют собой верхний горизонт ленточных образований, утративших свою первоначальную слоистость за счет процессов выветривания.

Для грунтов данной группы характерны высокая природная влажность и пористость, анизотропность механических свойств, высокая сжимаемость, пучинистость, тиксотропность.

В центральной (островной) части города эти грунты характеризуются значительной микробиологической пораженностью, текучей и текучепластичной консистенцией, способностью к разжижению даже при слабых динамических воздействиях, высокой коррозионной активностью.

Озерно-ледниковые отложения второй литориновой террасы (в правобережной и южной частях города) имеют чаще всего пластичную консистенцию с ожелезнением в верхней зоне и некоторым повышением прочности в нижней зоне (по сравнению со средней).

4 Повсеместным распространением в пределах исторического центра города пользуются современные озерно-морские (литориновые) отложения, в основном, пески и супеси, реже суглинки, локально распространены анциловые образования. Являясь отложениями теплого мелкого моря, они в значительной степени обогащены органикой.

Весьма проблематично использование этих отложений представляют в качестве основания сооружения либо среды подземных коммуникаций.

Суммарная мощность слоев озерно-морских отложений, как правило, не превышает 5 м; они представлены песками пылеватыми, супесями пылеватыми и суглинками со значительным количеством органики. Пылеватые пески, как правило, обладают плывунными свойствами, легко переходят в плывунное состояние при изменении гидродинамического режима и приложении дополнительных напряжений, особенно знакопеременных. Супеси и суглинки следует рассматривать как слабые квазипластичные тиксотропные грунты. При пригрузке их техногенными грунтами в случае свайных фундаментов можно возникновение нулевого или отрицательного трения.

В слоях озерно-морских отложений содержатся линзы и прослои торфа и заторфованных грунтов разного состава. Эти грунты обладают сравнительно большой и неравномерной сжимаемостью.

5 В верхней части разреза четвертичной толщи на территории города широко развиты болотные отложения, представленные торфами, мощность которых колеблется от 0,2 до 11,0 м. В настоящее время сохранились только наиболее крупные торфяники в северной части города (болота Лахтинское, Левашовское, Парголовское, Шуваловское и др.). Следует отметить, что в озерных осадках и в период последней трансгрессии образовались слои и линзы погребенных торфов, которые начали свое развитие в позднем голоцене. Наибольшим развитием пользуются торфяники верхового, в меньшей степени, низинного типа. Мощность болотных отложений составляет 0,5 ... 3 - 5 м, максимальная 7 - 12 м.

6 Особенностью геолого-литологического строения четвертичного разреза Санкт-Петербурга является наличие техногенных насыпных и намывных образований, которые укладывались на болотные, литориновые, либо озерно-ледниковые отложения. На многих участках размещались хозяйственно-бытовые отходы, а также отходы промышленности и строительного производства, что сказалось на состоянии и физико-механических свойств грунтов нижележащей толщи.

7 Территория Санкт-Петербурга находится в пределах северо-западной части Московского артезианского бассейна на южном склоне Балтийского щита со стоком подземных вод в Балтийское море.

Согласно существующей гидрогеологической стратификации разреза Санкт-Петербурга выделяют водоносные горизонты и комплексы:

а) подземные воды, приуроченные к породам четвертичного возраста, в том числе техногенным образованиям (насыпным и намывным), повсеместно присутствующим в верхней части разреза, современным отложениям болот и озерно-морским (литориновым) пескам и супесям, озерно-ледниковым разностям верхнечетвертичного времени, а также спорадически развитым песчаным линзам валдайской морены;

б) верхний межморенный водоносный горизонт, приуроченный к межстадиальным песчаным образованиям, обычно вскрывается в погребенных долинах города; этот горизонт, получивший название «полюстровский», даже в погребенных долинах распространен локально из-за значительной фациальной и литологической изменчивости отложений в пределах территории города;

в) нижний межморенный водоносный горизонт, прослеживаемый под московской мореной, имеет в пределах города еще более локальное развитие по сравнению с вышеупомянутым в связи с тем, что он обнаруживается только в отдельных глубоких палеодолинах города в его северной части и на юго-восточной окраине Санкт-Петербурга и рассматривается как водоносный горизонт стратегических запасов воды;

г) ордовикский и кембро-ордовикский водоносные горизонты вскрываются на Ижорском плато южнее Ладожско-Балтийского глинта; первый из них приурочен к известнякам, а второй - к песчаникам; эти горизонты прослеживаются в юго-западной части города в Красносельском районе;

д) ломоносовский водоносный горизонт вскрывается в песчаниках, его нижним водоупором служат верхнекотлинские глины венда, а верхним - нижнекембрийские синие глины лонтоваского горизонта; однако в южной части города, где глинистая толща верхнего водоупора отсутствует в разрезе, ломоносовский водоносный горизонт перекрывается четвертичными отложениями;

е) нижнекотлинский (гдовский) водоносный горизонт, приуроченный к песчаникам котлинской свиты венда, распространен повсеместно, начиная от северных границ города и области и далее в южном направлении за пределы Ленинградской области.

Грунтовые воды имеют региональное распространение на территории города, режим которых нарушается в островной части существованием шпунтовых ограждений и набережных, формирующих локальные, практически замкнутые гидрогеологические системы в пределах отдельных островов.

8 На территории города выделяется 2 подтипа гидродинамического режима грунтовых вод. В периферийных северных, северо-восточных и восточных районах с рассредоточенной застройкой и обилием зеленых массивов реализуется естественный и слабонарушенный гидродинамический режим, который определяется сезонными климатическими изменениями: предвесенние низкие уровни устанавливаются с середины февраля до конца марта; весенний максимальный уровень - в апреле - мае. При обилии осадков в летний период, обеспечивающих высокое положение уровня подземных вод до конца года, летне-осенние и осенне-зимние экстремумы сильно сглаживаются. Отмечается уменьшение годовой амплитуды колебаний уровней подземных вод.

Вообще-то аварийностью называют такое состояние здания, при котором оно грозит аварией, например, обрушением в любой момент. В этом случае нельзя медлить, и, не взирая на все попутные соображения, такие как права собственности, рыночная стоимость, наличие инвестора, охранного статуса и прочего, людей из здания надо выводить, а аварийность, если это вообще возможно, ликвидировать немедленно.

Случай реальной аварийности мы наблюдали 3 июня 2002 года на улице Двинской, когда обрушилась часть девятиэтажного общежития. Всех, находящихся в здании спасти не удалось. Такие случаи бывают – человечеству они известны, увы, не только как гипотетические теоретические модели. Но тем более странно, что с нормативными признаками аварийности наблюдается явный дефицит. Да и сам термин применяется весьма нестрого, можно сказать весьма безответственно: известны списки домов, признанные аварийными, составленные и десять (а может и более) лет назад. Но те дома так и стоят не только не рухнувшими, но и не расселенными, не расселяемыми, и даже факт включения дома в список аварийных остается неизвестным его жителям. Более того, есть все основания ощущать, что этот факт имеет некий гриф секретности, ибо, если жильцы и узнают что-то об этом, то, как правило, по каким-то «своим каналам», и эти сведения всегда не окончательны, всегда не до конца достоверны. Даже, если кем-то выдана об этом справка, остается вопрос – верить ли ей: справка районной администрации может содержать одно, а ПИБ – другое. Такое ощущение, что кто-то «наверху» колеблется «признавать – не признавать», что тут играют какие-то скрытые причины и, может быть, совсем не технического толка. Все это размывает понятие аварийности и заставляет вспомнить о герое одной сказки, которому никто не поверил, когда он кричал: «Пожар!, Пожар!», когда действительно был пожар, потому, что тот и раньше просто в шутку кричал: «Пожар!, Пожар!»

Аварийность аварийности рознь. Может быть аварийность внезапная, как на Двинской, когда в целом здание еще не успело накопить никакой ветхости, никаких видимых признаков аварийности, но возникшая слабость в одном месте погубила все здание. Аварийность может быть результатом накопленного износа конструкций (ветхости). Аварийность может быть полная всего здания, или локальная, например квартиры, или даже ее части – кухни или ванной. Может быть аварийность капитальных конструкций дома или систем его инженерного обеспечения. Аварийной может быть вся несущая стена или отдельный межоконный простенок, а то и отдельная балка перекрытия. Авария, ожидаемая вследствие аварийности, аварии рознь – одно дело, приходится ожидать разрушения здания, другое – обрушения перекрытия между двумя квартирами, или прорыва стояка холодной воды. Не всякое такое ожидание может служить обоснованием необходимости и неизбежности сноса здания.

Потребность в максимальной определенности признаков аварийности возникла давно. Но соответствующих норм как не было, так и нет.

Постановлением государственного Комитета Российской Федерации по статистике от 5 ноября 2001 года № 81 «Об утверждении Инструкции по заполнению формы федерального государственного статистического наблюдения за жилищным фондом» установлено:

«Ветхие здания (дома) - каменные дома с износом свыше 70%, деревянные и прочие дома - свыше 65%.

Аварийные здания (дома) определяются компетентными комиссиями в установленном порядке.»

В своих технических заключениях специалисты, обосновывая аварийность здания, вынуждены ссылаться на ТСН 50-3002-2004 «Проектирование фундаментов зданий и сооружений в Санкт-Петербурге». Этим ТСН приписывается при сооружении фундаментов новых зданий исследовать возможность их воздействия на соседнюю застройку, а для этого, обследовать эту застройку на предмет аварийности. Для этого и указаны признаки аварийности. Чтобы не пересказывать, просто процитируем их:

КАТЕГОРИИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЗДАНИЙ (СООРУЖЕНИЙ)

Таблица Б.1. Категории технического состояния

Сооружения

Деформации в конструкциях

Производственные и гражданские здания с полным каркасом и здания с монолитными железобетонными несущими конструкциями

В несущих конструкциях повреждений нет. В ограждающих кирпичных стенах или стыках повреждений без признаков сдвига. Фундаменты не имеют панелей местные трещины раскрытием до 0,5 мм

В несущих конструкциях имеются местные трещины раскрытием до 0,5 мм. Местные следы коррозии арматуры, коррозии закладных деталей нет. Трещины в стыках стен и заделках перекрытий раскрытием до 1 мм, в ограждающих конструкциях - до 3 мм; наличие признаков сдвигов. При металлическом каркасе коррозия до 5% сечения. зданий со стальным каркасом не более 0,0040 Относительная разность осадок фундаментов с железобетонным каркасом - не более 0,0020. Фундаменты повреждены трещинами раскрытием до 0,5 мм

В несущих конструкциях непрерывные трещины раскрытием более 0,5 мм. Местное оголение рабочей арматуры. Коррозия закладных элементов на глубину до 15%. Трещины в стенах заполнения каркаса раскрытием более 3 мм, смещения в стихах и заделках сборных перекрытий до 3 мм. Снижение прочности бетона в сжатой зоне изгибаемых элементов до 30% и в остальных участках - до 20%.

Провисание отдельных стержней распределительной арматуры, выпучивание хомутов, разрыв отдельных из них, за исключением хомутов сжатых элементов ферм вследствие коррозии стали (при отсутствии в этой зоне трещин). Площадь опирания сборных элементов меньше требуемой по нормам и проекту. Бетон в растянутой зоне на глубине защитного слоя между стержнями арматуры легко крошится. Прогибы элементов металлического каркаса превышают 1/150 пролета. Пластинчатая ржавчина с уменьшением площади сечения несущих элементов до 15%. Местные механические повреждения зданий со стальным каркасом более 15%. Относительная разность осадок фундаментов зданий со стальным каркасом более 0,0040, с железобетонным каркасом – более 0,0020. Фундаменты имеют трещины до 3 мм, отдельные разрушения защитного слоя, поверхностную коррозию арматуры

Здания и сооружения, в конструкциях которых не возникают усилия от неравномерных осадок

В несущих конструкциях зданий повреждений нет. В ограждающих стенах местные трещины раскрытием до 0,5 мм без смещений. Фундаменты не имеют повреждений

В несущих конструкциях трещины раскрытием до 1,0 мм, в ограждающих конструкциях - до 3 мм. Относительная разность осадок фундаментов до 0,006. Фундаменты повреждены трещинами раскрытием до 1,0 мм

В несущих конструкциях сплошные трещины раскрытием свыше 1 мм, в ограждающих конструкциях - более 3 мм.

Относительная разность осадок фундаментов свыше 0,006.

Фундаменты имеют трещины раскрытием более 1 мм, разрушение раствора и материала по боковой поверхности.

Многоэтажные бескаркасные здания с несущими стенами (сборными и кирпичными)

В несущих конструкциях повреждений нет, в ограждающих конструкциях и стыках панелей местные трещины раскрытием до 0,5 мм без признаков сдвигов.

Фундаменты повреждений не имеют

В несущих и ограждающих конструкциях и их сопряжениях трещины раскрытием до 3 мм и пересекающие не более двух рядов кладки; местная деструкция кладки вследствие атмосферных воздействий на глубину до 5 см; наличие признаков сдвигов в заделках.

Относительная разность осадок фундаментов зданий до 0,0015.

Крен не более 0,005.

Фундаменты повреждены, трещины раскрытием в бетоне и буте до 1 мм, в швах - до 3 мм

Сквозные трещины в несущих и ограждающих конструкциях раскрытием более 3 мм, сдвиги элементов в заделках не более чем на 2 см; трещины под опиранием горизонтальных элементов (на глубину не более 2 см, пересекающие не более 2 рядов кладки).

Размораживание и выветривание кладки, отслоение от облицовки на глубину до 25% толщины. Волосяные трещины при пересечении не более четырех рядов кладки при числе трещин не более четырех на 1 м ширины (толщины) стены, столба или простенка. Образование вертикальных трещин между продольными в поперечными стенами. Местное (краевое) повреждение кладки на глубину до 2 см под опорами ферм, балок, прогонов и перемычек в виде трещин и лещадок, вертикальные трещины по концам опор, пересекающие не более двух рядов. Смещение плит перекрытий на опорах не более1/5 глубины заделки, но не более 2 см. В отдельных местах наблюдается увлажнение каменной кладки вследствие нарушения горизонтальной гидроизоляции, карнизных свесов, водосточных труб. Снижение несущей способности кладки до 25%.

Относительная разность осадок фундаментов зданий из крупных панелей свыше 0,0015.

Крен более 0,005.

Фундаменты имеют трещины в бетоне и буте до3 мм, разрушение раствора

Примечание. При определении категории технического состояния следует руководствоваться следующим правилом: категория 1 соответствует случаям, когда наличествуют все перечисленные в таблице Б1 признаки, категории 2 и 3 - хотя бы один признак.

Предварительно напряженные железобетонные конструкции с высокопрочной арматурой, имеющие признаки 2-й категории технического состояния, относятся к 3-й категории, а имеющие признаки 3-й категории - соответственно к аварийной категории


Таблица Б.2. Признаки аварийного состояния элементов конструкции здания


Тип конструкции

Признаки аварийного состояния

Железобетонные конструкции

Трещины в конструкциях, испытывающих знакопеременные воздействия, трещины, в том числе пересекающие опорную зону анкеровки растянутой арматуры; разрыв хомутов в зоне наклонной трещины в средних пролетах многопролетных балок и плит, а также слоистая ржавчина или язвы, вызывающие уменьшение площади сечения арматуры более 15%; выпучивание арматуры сжатой зоны конструкций; деформация закладных и соединительных элементов; отходы анкеров от пластин закладных деталей из-за коррозии стали в сварных швах, расстройство стыков сборных элементов с взаимным смещением последних; смещение опор, приводящее к уменьшению площади опирания на них сборных элементов; значительные (более1/50 пролета) прогибы изгибаемых элементов при наличии трещин в растянутой зоне с раскрытием более 0,5 мм; разрыв хомутов в зоне наклонной трещины; разрыв отдельных стержней рабочей арматуры в растянутой зоне; раздробление бетона и выкрошивание заполнителя в сжатой зоне. Снижение прочности бетона в сжатой зоне изгибаемых элементов и в остальных участках более 30%. Площадь опирания сборных элементов меньше требований норм и проекта. Существующие трещины, прогибы и другие повреждения свидетельствуют об опасности разрушения конструкций и возможности их обрушения. Наклонная трещина раскрытием более 0,5 мм у свободной опоры элемента и наличие признаков появления продольной трещины над концом наклонной трещины в сжатой зоне.

Трещины в консоли колонны с любым раскрытием.

Отклонение колонны от вертикали более допускаемого нормами и/или нарушение целостности стыков сопряженных элементов. Пропуски или некачественное выполнение вертикальных связей, отсутствие или непроектное выполнение сварки закладных деталей.

Выход панели крупнопанельного здания из плоскости стены более допускаемого нормами.

Трещины в горизонтальных и вертикальных швах по периметру панели крупнопанельных зданий. Трещины в панелях крупнопанельных зданий

Каменные конструкции

Сильные повреждения. Большие обвалы в стенах. Размораживание и выветривание кладки на глубину до 40% толщины. Вертикальные и косые трещины (исключая температурные и осадочные) в несущих стенах и столбах на высоте четырех рядов кладки. Наклоны и выпучивание стен в пределах этажа на 1/3 и более их толщины. Ширина раскрытия трещин в кладке от неравномерной осадки здания достигает 50 мм и более, отклонение от вертикали на величину более 1/50 высоты конструкции. Смещение (сдвиг) стен, столбов, фундаментов по горизонтальным швам или косой штрабе. В конструкции имеет место снижение прочности камней и раствора на 30-50% или применение низкопрочных материалов. Отрыв продольных стен от поперечных в местах их пересечения, разрывы или выдергивание стальных связей и анкеров, крепящих стены к колоннам и перекрытиям. В кирпичных сводах и арках образуются хорошо видимые характерные трещины, свидетельствующие об их перенапряжении и аварийном состоянии. Повреждение кладки под опорами ферм, балок и перемычек в виде трещин, разуплотнения со смятием. Раздробление камня или смещение рядов кладки по горизонтальным швам на глубину более 20 мм. Смещение плит перекрытий на опорах более 1/5 глубины заделки в стене. В кладке наблюдаются зоны длительного замачивания, промораживания и выветривания кладки и ее разрушение на глубину 1/5 толщины стены и более. Происходит расслоение кладки по вертикали на отдельные самостоятельно работающие столбики. Наблюдается полное корродирование металлических затяжек и нарушение их анкеровки. Горизонтальная гидроизоляция полностью разрушена. Кладка в этой зоне легко разбивается с помощью ломика. Камень крошится, расслаивается. При ударе молотком по камню звук глухой. В конструкциях наблюдаются деформации и дефекты, свидетельствующие о потере ими несущей способности свыше 50%. Возникает угроза обрушения. Внутреннее расслоение кладки (глухой звук при ударе по поверхности); то же с выпучиванием наружной версты. Скол кладки под концом плиты

Стальные конструкции

Прогибы изгибаемых элементов более 1/75 пролета. Потеря местной устойчивости конструкций (выпучивание стенок и поясов балок и колонн). Срез отдельных болтов или заклепок в многоболтовых соединениях. Коррозия с уменьшением расчетного сечения несущих элементов до 25% и более. Трещины в сварных швах или околошовной зоне. Механические повреждения, приводящие к ослаблению сечения до25%. Отклонения ферм от вертикальной плоскости более 15 мм. Расстройство узловых соединений от проворачивания болтов или заклепок; разрывы отдельных растянутых элементов; наличие трещин в основном материале элементов; расстройство стыков и взаимных смещений опор

Деревянные конструкции

Прогиб более чем на 0,01 длины пролета. Наличие продольных трещин у панелей или гвоздей, скалывание площадки в лобовой врубке. Отсутствие стяжного болта в лобовой врубке, выпучивание древесины в сжатой зоне (на сжатой грани образуются складки).

Гниение элементов более 30%.

Относительный прогиб превышает допустимое значение

Примечания.

1. Для отнесения конструкции к аварийной категории достаточно наличия хотя бы одного признака, характеризующего эту категорию.

2. Отнесение обследуемой конструкции к аварийной категории состояния при наличии признаков, не отмеченных в таблице, в сложных и ответственных случаях должно производиться на основе детальных инструментальных обследований, выполняемых специализированными организациями