Электронная теория проводимости металлов. Электронная теория проводимости Основные положения классической теории проводимости металлов

ПОЛУПРОВОДНИКОВЫЕ КОМПОНЕНТЫ ЭЛЕКТРОННЫХ ЦЕПЕЙ

ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКОВ

К полупроводникам относятся материалы, которые при комнатной температуре имеют удельное электрическое сопротивление от 10 -5 до 10 10 Ом·см (в полупроводниковой технике принято измерять сопротивление 1 см 3 материала). Количество полупроводников превышает количество металлов и диэлектриков. Наиболее часто используются кремний, арсенид галлия, селен, германий, теллур, разные оксиды, сульфиды, нитриды и карбиды.

Основные положения теории электропроводности.

Атом состоит из ядра, окруженного облаком электронов, которые находятся в движении на некотором расстоянии от ядра в пределах слоев (оболочек), определяемых их энергией. Чем дальше от ядра находится вращающийся электрон, тем выше его энергетический уровень. Свободные атомы имеют дискретный энергетический спектр. При переходе электрона с одного разрешенного уровня на другой, более отдаленный, происходит поглощение энергии, а при обратном переходе –ее выделение. Поглощение и выделение энергии может происходить только строго определенными порциями –квантами. На каждом энергетическом уровне может находиться не более двух электронов. Расстояние между энергетическими уровнями уменьшается с увеличением энергии. «Потолком» энергетического спектра является уровень ионизации, на котором электрон приобретает энергию, позволяющую ему стать свободным и покинуть атом.

Если рассматривать структуру атомов различных элементов, то можно выделить оболочки, которые полностью заполнены электронами (внутренние), и незаполненные оболочки (внешние). Последние слабее связаны с ядром, легче вступают во взаимодействие с другими атомами. Поэтому электроны, расположенные на внешней недостроенной оболочке, называют валентными.

Рис.2.1. Структура связей атомов германия в кристаллической решетке и условные обозначения запрещенных и разрешенных зон.

При образовании молекул между отдельными атомами действуют различные типы связей. Для полупроводников наиболее распространенными являются ковалентные связи, образующиеся за счет обобществления валентных электронов соседних. Например в кремнии, атом которого имеет четыре валентных электрона, в молекулах возникают ковалентные связи между четырьмя соседними атомами (рис.2.1,а).

Если атомы находятся в связанном состоянии, то на валентные электроны действуют поля электронов и ядер соседних атомов, в результате чего каждый отдельный разрешенный энергетический уровень атома расщепляется на ряд новых энергетических уровней, энергии которых близки друг к другу. На каждом из этих уровней могут также находиться только два электрона. Совокупность уровней, на каждом из которых могут находиться электроны, называют разрешенной зоной (1; 3 на рис. 2.1, б). Промежутки между разрешенными зонами носят название запрещенных зон (2 на рис. 2.1, б). Нижние энергетические уровни атомов обычно не образуют зон, так как внутренние электронные оболочки в твердом теле слабо взаимодействуют с соседними атомами, будучи как бы «экранированными» внешними оболочками. В энергетическом спектре твердого тела можно выделить три вида зон: разрешенные (полностью заполненные) зоны, запрещенные зоны и зоны проводимости.


Разрешенная зона характеризуется тем, что все уровни ее при температуре 0 К заполнены электронами. Верхнюю заполненную зону называют валентной.

Запрещенная зона характеризуется тем, что в ее пределах нет энергетических уровней, на которых могли бы находиться электроны.

Зона проводимости характеризуется тем, что электроны, находящиеся в ней обладают энергиями, позволяющими им освобождаться от связи с атомами и передвигаться внутри твердого тела, например под воздействием электрического поля.

Разделение веществ на металлы, полупроводники и диэлектрики выполняют в исходя из зонной структуры тела при температуре абсолютного нуля.

У металлов валентная зона и зона проводимости взаимно перекрываются, поэтому при 0 К металл обладает электропроводностью.

У полупроводников и диэлектриков зона проводимости при 0 К пуста и электропроводность отсутствует. Различия между ними чисто количественные – в ширине запрещенной зоны ΔЭ. У наиболее распространенных полупроводников ΔЭ=0,1÷3 эВ (у полупроводников, на основе которых в будущем надеются создать высокотемпературные приборы, ΔЭ=3÷6 эВ), у диэлектриков ΔЭ>6 эВ.

В полупроводниках при некотором значении температуры, отличном от нуля, часть электронов будет иметь энергию, достаточную для перехода в зону проводимости. Эти электроны становятся свободными, а полупроводник–электропроводным.

Уход электрона из валентной зоны приводит к образованию в ней незаполненного энергетического уровня. Вакантное энергетическое состояние носит название дырки. Валентные электроны соседних атомов в присутствие электрического поля могут переходить на эти свободные уровни, создавая дырки в другом месте. Такое перемещение электронов можно рассматривать как движение положительно заряженных фиктивных зарядов–дырок.

Электропроводность, обусловленную движением свободных электронов, называют электронной, а электропроводность, обусловленную движением дырок, – дырочной.

У абсолютно чистого и однородного полупроводника при температуре отличной от 0 К, свободные электроны и дырки образуются попарно, т.е. число электронов равно числу дырок. Электропроводность такого полупроводника (собственного), обусловленная парными носителями теплового происхождения, называется собственной.

Процесс образования пары электрон – дырка называют генерацией пары. При этом генерация пары может быть следствием не только воздействия тепловой энергии (тепловая генерация), но и кинетической энергии движущихся частиц (ударная генерация), энергии электрического поля, энергии светового облучения (световая генерация) и т.д.

Образовавшиеся в результате разрыва валентной связи электрон и дырка совершают хаотическое движение в объеме полупроводника до тех пор, пока электрон не будет «захвачен» дыркой, а энергетический уровень дырки не будет «занят» электроном из зоны проводимости. При этом разорванные валентные связи восстанавливаются, а носители заряда–электрон и дырка – исчезают. Этот процесс восстановления разорванных валентных связей называют рекомбинацией.

Промежуток времени, прошедший с момента генерации частицы, являющейся носителем заряда, до ее рекомбинации называют временем жизни, а расстояние, пройденное частицей за время жизни, – диффузионной длиной. Так как время жизни каждого из носителей различно, то для однозначной характеристики полупроводника под временем жизни чаще всего понимают среднее (среднестатистическое) время жизни носителей заряда, а под диффузионной длиной – среднее расстояние, которое проходит носитель заряда за среднее время жизни. Диффузионная длина и время жизни электронов и дырок связаны между собой соотношениями

; (2,1)

где , – диффузионная длина электронов и дырок;

, – время жизни электронов и дырок;

– коэффициенты диффузии электронов и дырок (плотность потоков носителей зарядов при единичном градиенте их концентраций).

Среднее время жизни носителей заряда численно определяется как промежуток времени, в течение которого концентрация носителей заряда, введенных тем или иным способом в полупроводник уменьшится в е раз (е ≈2,7).

Если в полупроводнике создать электрическое поле напряженностью Е, то хаотическое движение носителей заряда упорядочится, т.е. дырки и электроны начнут двигаться во взаимно противоположных направлениях причем дырки – в направлении, совпадающем с направлением электрического поля. Возникнут два встречно направленных потока носителей заряда, создающих токи, плотности которых равны

J n др =qnμ n E; J p др =qpμ p E, (2,2)

где q– заряд носителя заряда (электрона);

n, p –число электронов и дырок в единице объема вещества (концентрация);

μ n , μ p – подвижность носителей заряда.

Подвижность носителей заряда есть физическая величина, характеризуемая их средней направленной скоростью в электрическом поле с напряженностью 1В/см; μ =v/E, где v– средняя скорость носителя.

Так как носители заряда противоположного знака движутся в противоположных направлениях, то результирующая плотность тока в полупроводнике

J др =J n др +J p др =(qnμ n +qpμ p )E (2.3)

Движение носителей заряда в полупроводнике, вызванное наличием электрического поля и градиента потенциала, называют дрейфом, а созданный этими зарядами ток – дрейфовым током.

Движение под влиянием градиента концентрации называют диффузией.

Удельную проводимость полупроводника σ можно найти как отношение удельной плотности тока к напряженности электрического поля

σ =1/ρ=J/E=qnμ n +qpμ p ,

где ρ – удельное сопротивление полупроводника.

Примесная электропроводность. Электрические свойства полупроводников зависят от содержания в них атомов примесей, а также от от различных дефектов кристаллической решетки: пустых узлов решетки, атомов или ионов, находящихся между узлами решетки, и т. д. Примеси бывают акцепторные и донорные.

Акцепторные примеси. Атомы акцепторных примесей способны принимать извне один или несколько электронов, превращаясь в отрицательный ион.

Если, например, в кремний ввести трехвалентный атом бора, то образуется ковалентная связь между бором и четырьмя соседними атомами кремния и получается устойчивая восьмиэлектронная оболочка за счет дополнительного электрона, отобранного у одного из атомов кремния. Этот электрон будучи «связанным» превращает атом бора в неподвижный отрицательный ион (рис 2.2, а). На месте ушедшего электрона образуется дырка, которая добавляется к собственным дыркам, порожденным нагревом (термогенерацией). При этом в полупроводнике концентрация дырок превысит концентрацию свободных электронов собственной проводимости (p>n). Следовательно в полупроводнике

Рис.2.2. Структура (а) и зонная диаграмма (б) полупроводника с акцепторными примесями.

будет преобладать дырочная электропроводность. Такой полупроводник называют полупроводником p–типа.

При приложении к этому полупроводнику напряжения будет преобладать дырочная составляющая тока, т.е. J n

Если содержание примесей мало, что чаще всего имеет место, то их атомы можно рассматривать как изолированные. Их энергетические уровни не расщепляются на зоны. На зонной диаграмме (рис. 2.2,б) примесные уровни изображены штрихами. Валентные уровни акцепторной примеси расположены в нижней части запрещенной зоны, поэтому при небольшой дополнттельной энергии (0,01 – 0,05 эВ) электроны из валентной зоны могут переходить на этот уровень, образуя дырки. При низкой температуре вероятность перехода электронов через запрещенную зону во много раз меньше вероятности их перехода из валентной зоны на уровень акцепторной примеси.

Если концентрация примесей в полупроводнике достаточно велика, то уровни акцепторной примеси расщепляются, образуя зону, которая может слиться с валентной зоной. Такой полупроводник называется вырожденным. В вырожденном полупроводнике концентрация носителей заряда собственной электропроводности значительно меньше, чем в невырожденном. Поэтому их качественной особенностью является малая зависимость характеристики полупроводника от температуры окружающей среды. При этом доля тепловых носителей заряда собственной электропроводности по сравнению с примесными будет невелика.

Донорные примеси. Атомы донорных примесей имеют валентные электроны, слабо связанные со своим ядром (рис. 2.3, а). Эти электроны, не участвуя в межатомных связях, могут легко перейти в зону проводимости материала, в который была введена примесь. При этом в решетке остается положительно заряженный ион, а электрон добавится к свободным электронам

Рис.2.3. Структура (а) и зонная диаграмма (б) полупроводника с донорными примесями.

собственной электропроводности. Донорный уровень находится в верхней части части запрещенной зоны (рис. 2.3, б). Переход электрона с донорного уровня в зону проводимости происходит тогда, когда он получает небольшую дополнительную энергию. В этом случае концентрация свободных электронов в полупроводнике превышает концентрацию дырок и полупроводник обладает электронной электропроводностью. Такие полупроводники называют полупроводниками n–типа. Если, например в кремний ввести атом пятивалентного фосфора, то четыре его валентных электрона вступят в ковалентную смязь с четырьмя электронами кремния и окажутся в связанном состоянии (рис. 2.3, а). Оставшийся электрон фосфора становится свободным. При этом концентрация свободных электронов выше концентрации дырок, т.е. преобладает электронная электропроводность. При увеличении концентрации примесей уровни доноров расщепляются, образуя зону, которая может слиться с зоной проводимости. Полупроводник становится вырожденным.

Носители зарядов, концентрация которых преобладает в полупроводнике, называют основными, а носители зарядов, концентрация которых в полупроводнике меньше, чем основных, называют неосновными.

В примесном полупроводнике при низких температурах преобладает примесная электропроводность. Однако по мере повышения температуры собственная электропроводность непрерывно возрастает, в то время как примесная имеет предел, соответствующий ионизации всех атомов примеси. Поэтому при достаточно высоких температурах электропроводность всегда собственная.

Теория Друде была разработана в 1900 году, через три года после открытия электрона. Затем теория была доработана Лоренцом, и сейчас она является классической и актуальной теорией проводимости металлов.

Электронная теория Друде-Лоренца

Согласно теории, носителями тока в металлах являются свободные электроны.

Друде предположил, что электроны в металле подчиняются и могут быть описаны уравнениями молекулярно-кинетической теории. Другими словами, свободные электроны в металле подчиняются законам МКТ и образуют "электронный газ".

Двигаясь в металле, электроны соударяются между собой и с кристаллической решеткой (это и есть проявление электрического сопротивления проводника). Между соударениями электроны, по аналогии с длиной свободного пробега молекул идеального газа, успевают преодолеть средний путь λ .

Без действия электрического поля, ускоряющего электроны, кристаллическая решетка и электронный газ стремятся к состоянию теплового равновесия.

Приведем основные положения теории Друде:

  1. Взаимодействие электрона с другими электронами и ионами не учитывается между столкновениями.
  2. Столкновения являются мгновенными событиями, внезапно меняющими скорость электрона.
  3. Вероятность для электрона испытать столкновение за единицу времени равна 1 τ .
  4. Состояние термодинамического равновесия достигается благодаря столкновениям.
Важно.

Несмотря на множество допущений, теория Друде-Лорецна хорошо объясняет эффект Холла, явление удельной проводимости и теплопроводность металлов. Именно поэтому она актуальна по сей день, хотя ответы на многие вопросы (например, почему в металле существуют свободные ионы и электроны) смогла дать только квантовая теория твердого тела.

В рамках теории Друде объясняется сопротивление металлов. Оно обусловлено соударениями электронов с узлами кристаллической решетки.

Выделение тепла, согласно закону Джоуля-Ленца, также происходит по причине соударения электронов с ионами решетки.

Теплопередача в металлах также осуществляется электронами, а не кристаллической решеткой.

Терия Друде не объясняет многих явлений, как например сверхпроводимость, и не применима в сильных магнитных полях, в слабых магнитных полях может терять применимость из-за квантовых явлений.

Среднюю скорость электронов можно вычислить по формуле для идеального газа:

Здесь k - постоянная Больцмана, T - температура металла, m - масса электрона.

При включении внешнего электрического поля, на хаотичное движение частиц "электронного газа" накладывается упорядоченное движение электронов под действием сил поля, когда электроны начинают упорядоченно двигаться со средней скоростью u . Величину этой скорости можно оценить из соотношения:

где j - плотность тока, n - концентрация свободных электронов, q - заряд электрона.

При больших плотностях тока рассчеты дают следующий результат: средняя скорость хаотичного движения электронов во много раз (≈ 10 8) больше скорости упорядоченного движения под действием поля. При вычислении суммарной скорости полагают, что

u → + v → ≈ v →

Формула Друде

Формула Друде выводится из кинетического уравнения Больцмана и имеет вид:

σ = n q 2 τ m *

Здесь m * - эффективная масса электрона, τ - время релаксации, то есть время, за которое электрон "забывает" о том, в какую сторону двигался после соударения.

Друде вывел закон Ома для токов в металле:

Опыт Толмена и Стюарта

В 1916 году опыт Толмена и Стюарта дал прямое доказательство тому, что носителями тока в металлах являются электроны.

Суть опыта была в следующем.

Опыт Толмена и Стюарта

Проводящая катушка с проводом длиной L вращалась вокруг своей оси с большой скоростью, а ее концы были замкнуты на гальванометр. Когда катушку резко тормозили, свободные электроны в металле продолжали двигаться по инерции, и гальванометр регистрировал импульс тока.

Считая, что свободные электроны подчиняются законам механики Ньютона, можно записать, что при остановке проводника электрон приобретает ускорение v " (в катушке направлено вдоль проводов). При этом на электрон действует сила, направленная противоположно ускорению.

Под воздействием этой силы электрон ведет себя так, как если бы на него действовало поле E = - m v " q . Эдс, возникающую в катушке при торможении можно записать, как:

ε = ∫ L E d l = - m v " q ∫ L d l = - m v " q L

Считая, что ускорение одинаково в каждом витке, можно записать закон Ома для катушки, а затем вычислить заряд, проходящий в ней за время d t:

I R = - m v " q L

d q = I d t = - m L d v q R d t d t = - m L d v q R

Заряд, прошедший от момента начала торможения до остановки:

q = - m L q R ∫ v 0 0 d v = - m L v 0 q R

Опыт Толмена и Стюарта получил хорошее согласование с теорией, полученное экспериментально отношение q m соответствовало отношению заряда электрона к его массе.

Пример

При T = 300 К вычислите среднюю скорость теплового движения свободных электронов.

Вычислим среднюю скорость, применяя формулу для идеального газа:

k = 1 , 38 · 10 - 23 Д ж К

m = 9 , 31 · 10 - 31 к г

Подставляем значения и вычисляем:

v = 8 · 1 , 38 · 10 - 23 · 3 · 10 2 3 , 14 · 9 , 31 · 10 - 31 ≈ 10 5 м с

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Видемана-Франца.


Электрический ток в металлах –это упорядоченное движение электронов под действием электрического поля.
Это предположение было экспериментально подтверждено в опыте К. Рикке (1911).
Через цепь из трех последовательных цилиндров - медного, алюминиевого и снова медного - в течение долгого времени (около года) пропускался электрический ток - в общей сложности через цилиндры прошел заряд 3,5 МКл. Однако никаких следов переноса вещества (меди или алюминия) не было обнаружено. Отсюда следовало, что электропроводность металлов отвечают свободные заряды, общие для всех металлов - на эту роль подходили только электроны.

Еще одно убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов (опыт Толмена и Стьюарта)(1916).

Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, и

в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся гальванометром.

При торможении вращающейся катушки на каждый носитель заряда e массой m действует тормозящая сила, которая играет роль сторонней силы, т. е. силы неэлектрического происхождения:

Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила :

За время торможения катушки по цепи протечет заряд q, равный:

Где – длина проволоки катушки, I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, – начальная линейная скорость проволоки.

Полученное в опытах значение удельного заряда носителей тока в металле оказался близким к удельному заряду электрона

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов , равной по порядку величины числу атомов в единице объема .

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории . Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ.

Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла. Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер . Высота этого барьера называется работой выхода .

При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории:

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Величина дрейфовой скорости электронов лежит в пределах 0,6 – 6 мм/c. Таким образом, средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения.

Малая скорость дрейфа не противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·10 8 м/с. Через время (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках: закон Ома , закон Джоуля – Ленца и объясняет существование электрического сопротивления металлов.

Закон Ома:

Электрическое сопротивление проводника.

Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.

Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы - электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

Как отличается электропроводность разных металлов?

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.

Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы - медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже - не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

Классическая теория электропроводности металлов

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.

Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.

Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

Металлы с высокой электопроводностью

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.

Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.

В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции - изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

Носителями тока в металлах являются свободные электроны, т.е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости металлов, созданной немецким физиком П. Друде и разработанной впоследствии нидерландским физиком Х. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов - опыт Рикке (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Cu, Al, Cu) одинакового радиуса. Несмотря на то, что общий заряд, прошедший через эти цилиндры, достигал огромного значения ( Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытие в 1897 г. английским физиком Д. Томсоном электроны.

Для доказательства этого предположения необходимо было определить знак и величину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Эти опыты в 1916 г. были проведены американским физиком Р. Толменом и шотландским физиком Б. Стюартом. Ими экспериментально доказано, что носители тока в металлах заряжены отрицательно, а их удельный заряд приблизительно одинаков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока в металлах и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны.



Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся "свободными" и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде-Лоренца, электроны обладают такой же энергией теплового движения, как и молекулы одноатомного газа.

Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т.е. возникает электрический ток.

Даже при очень больших плотностях тока средняя скорость упорядоченного движения электронов, обуславливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость можно заменять скоростью теплового движения .

1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью Е=const. Со стороны поля заряд e испытывает действие силы F=eE и приобретает ускорение . Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

,

где - среднее время между двумя последовательными соударениями электрона с ионами решетки.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона

. (9.5.1.)

Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время свободного пробега определяется средней длиной свободного пробега < > и средней скоростью движения электронов относительно кристаллической решетки проводника, равной + ( - средняя скорость теплового движения электронов). Так как << ,

Подставив значение в формулу (9.5.1.), получим

.

Плотность тока в металлическом проводнике

Е,

откуда видно, что плотность тока пропорциональна напряженности поля, т.е. получили закон Ома в дифференциальной форме. Коэффициент пропорциональности между j и Е есть не что иное, как удельная проводимость материала

, (9.5.2.)

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

Закон Джоуля - Ленца.

К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию

. (9.5.3.)

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т.е. на его нагревание.

За единицу времени электрон испытывает с узлами решетки в среднем столкновений:

Если n - концентрация электронов, то в единицу времени происходит n столкновений и решетке передается энергия

, (9.5.5.)

которая идет на нагревание проводника. Подставив (9.5.3.) и (9.5.4.) в (9.5.5.), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,

. (9.5.6.)

Величина w называется удельной тепловой мощностью тока. Коэффициент пропорциональности между w и по (9.5.2.) есть удельная проводимость ; следовательно, выражение (9.5.6.) - закон Джоуля - Ленца в дифференциальной форме.

Классическая теория электропроводности металлов объяснила законы Ома и Джоуля - Ленца, а также дала качественное объяснение закона Видемана - Франца. Однако она помимо рассмотренных противоречий в законе Видемана - Франца столкнулась еще с рядом трудностей при объяснении различных опытных данных. Рассмотрим некоторые из них.

Температурная зависимость сопротивления. Из формулы удельной проводимости (9.5.2.) следует, что сопротивление металлов, т.е. величина, обратно пропорциональная , должна возрастать пропорционально (в (9.5.2.) n и < > от температуры не зависят, а ~ ). Этот вывод электронной теории противоречит опытным данным, согласно которым R~T.

Оценка средней длины свободного пробега электронов в металлах. Чтобы по формуле (9.5.2.) получить , совпадающие с опытными значениями, надо принимать < > значительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде-Лоренца.

Теплоемкость металлов. Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т.е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти, теплоемкость одноатомного кристалла равна 3R. Учтем, что теплоемкость одноатомного электронного газа равна . Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т.е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.

Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла - Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной теории электропроводности металлов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.