Закон Паскаля: формула и применение. Практическая значимость закона паскаля Давление в жидкостях и газах закон

Давление на поверхность жидкости, произведенное внешними силами, передается жидкостью одинаково во всех направлениях.

Природа давления жидкости, газа и твердого тела отличается. Хотя у давлений жидкости и газа различная природа, у их давлений есть один одинаковый эффект, отличающий их от твердых тел. Этот эффект, а точнее физическое явление, описывает закон Паскаля .

Закон Паскаля Производимое внешними силами давление в какое-то место жидкости или газа, передается по жидкости или газу без изменения в любую точку.

Закон Паскаля был открыт французским учёным Б. Паскалем в 1653 г., этот закон подтверждается различными опытами.

Давление это физическая величина, равная модулю силы F , действующей перпендикулярно поверхности, которая приходится на единицу площади S этой поверхности.

Формула закона Паскаля Закон Паскаля описывается формулой давления:

\(p = \dfrac{F}{S} \)

где p – это давление (Па), F – приложенная сила (Н), S – площадь поверхности (м 2).

Давление – скалярная величина Важно понимать, что давление – величина скалярная, то есть у нее нет направления.

Способы уменьшения и увеличения давления:

Для того, чтобы увеличить давление, необходимо увеличить приложенную силу и/или уменьшить площадь ее приложения.

И наоборот, для уменьшения давления, необходимо уменьшить приложенную силу и/или увеличить площадь ее приложения.

Различают следующие виды давлений:

  • атмосферное (барометрическое)
  • абсолютное
  • избыточное (манометрическое)

Давление газов зависит:

  • от массы газа - чем больше газа в сосуде, тем больше давление;
  • от объема сосуда - чем меньше объем с газом определенной массы, тем больше давление;
  • от температуры - с ростом температуры увеличивается скорость движения молекул, которые интенсивнее взаимодействуют и сталкиваются со стенками сосуда, поэтому и давление возрастает.

Жидкости и газы передают по всем направлениям не только оказываемое на них давление, но и то давление, которое существует внутри них благодаря весу собственных частей. Верхние слои давят на средние, а средние - на нижние, нижние - на дно.

Внутри жидкости существует давление. На одном и том же уровне оно одинаково по всем направлениям. С глубиной давление увеличивается.

Закон Паскаля означает, что если, например, надавить на газ с силой в 10 Н , и площадь этого давления будет 10 см2 (т. е. (0,1 * 0,1) м2 = 0,01 м2 ), то давление в месте приложения силы увеличится на p = F/S = 10 Н / 0,01 м2 = 1000 Па , и на эту величину увеличится давление во всех местах газа. То есть давление передастся без изменений в любую точку газа.

То же самое характерно для жидкостей. А вот для твердых тел - нет. Это связано с тем, что молекулы жидкости и газа подвижны, а в твердых телах, хотя и могут колебаться, но остаются на своем месте. В газах и жидкостях молекулы перемещаются из области с более высоким давлением в область с более низким, таким образом давление во всем объеме быстро выравнивается.

В отличие от твердых тел жидкости и газы в состоянии равновесия не обладают упругостью формы. Они обладают только объемной упругостью. В состоянии равновесия напряжение в жидкости и газе всегда нормально к площадке, на которую оно действует. Касательные напряжения вызывают только изменения формы эле­ментарных объемов тела (сдвиги), но не величину самих объемов. Для таких деформаций в жидкостях и газах усилий не требуется, а потому в этих средах при равновесии касательные напряжения не возникают.

закон сообщающихся сосудов в сообщающихся сосудах, заполненных однородной жидкостью, давление во всех точках жидкости, расположенных в одной горизонтальной плоскости, одинаково независимо от формы сосудов.

При этом поверхности жидкости в сообщающихся сосудах устанавливаются на одном уровне

Давление, которое появляется в жидкости из-за поля тяжести, называется гидростатическим . В жидкости на глубине \(H \) , считая от поверхности жидкости, гидростатическое давление равно \(p=\rho g H \) . Полное давление в жидкости складывается из давления на поверхности жидкости (обычно это атмосферное давление) и гидростатического.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Жидкости и газы передают давление, которое оказывается на них, по всем направлениям одинаково.

Данный закон был открыт в середине XIV века французским ученым Б. Паскалем и получил впоследствии его имя.

То, что жидкости и газы передают давление, объясняют большой подвижностью частиц, из которых они составлены, это существенным образом отличает их от твёрдых, тел, чьи частицы малоподвижны, и могут только совершать колебания около положений своего равновесия. Допустим, газ, находится в замкнутом сосуде с поршнем, его молекулы равномерно заполняют весь предоставленный ему объем. Передвинем поршень, уменьшив объем сосуда, слой газа, прилегающий к поршню, сожмется, молекулы газа будут располагаться плотнее, чем на некотором удалении от поршня. Но через некоторое время частицы газа, участвуя в хаотичном движении, перемешаются с другими частицами, плотность газа выровняется, но станет больше, чем до передвижения поршня. При этом количество ударов о дно и стенки сосуда возрастает, следовательно, давление поршня передается газом во всех направлениях одинаково и в каждой точке увеличивается на одну и ту же величину. Аналогичные рассуждения можно отнести к жидкости.

Формулировка закона Паскаля

Давление, производимое внешними силами на жидкость (газ), находящуюся в состоянии покоя, передается веществом во все стороны без изменения к любой точке жидкости (газа) и стенкам сосуда.

Закон Паскаля выполняется для несжимаемых и сжимаемых жидкостей и газов, если сжимаемостью пренебрегают. Этот закон - следствие закона сохранения энергии.

Гидростатическое давление жидкостей и газов

Жидкости и газы передают не только внешнее давление, но и давление, которое возникает благодаря существованию силы тяжести. Эта сила создает внутри жидкости (газа) давление, которое зависит от глубины погружения, при этом приложенные внешние силы увеличивают это давление в любой точке вещества на одну и ту же величину.

Давление, которое оказывает покоящаяся жидкость (газ), называют гидростатическим. Гидростатическое давление ($p$) на любой глубине внутри жидкости (газа) не зависит от формы сосуда, в котором она (он) находится и равно:

где $h$ - высота столба жидкости (газа); $\rho $ - плотность вещества. Из формулы (1) для гидростатического давления следует, что во всех местах жидкости (газа), которые находятся на одной глубине, давление одно и то же. С увеличением глубины гидростатическое давление растет. Так, на глубине 10 км давление воды составляет приблизительно ${10}^8Па$.

Следствие закона Паскаля: давление в любой точке на одном горизонтальном уровне жидкости (газа), находящейся в состоянии равновесия имеет одну и ту же величину.

Примеры задач с решением

Пример 1

Задание. Даны три сосуда разной формы (рис.1). Площадь дна каждого сосуда равна $S$. В каком из сосудов давление одной и той же жидкости на дно наибольшее?

Решение. В данной задаче речь идет о гидростатическом парадоксе. Следствием закона Паскаля является то, что давление жидкости не зависит от формы сосуда, а определено высотой столба жидкости. Так как по условию задачи площадь дна каждого сосуда равна S, из рис.1 видим, что высота столбов жидкости одинакова, несмотря на разный вес жидкости, сила «весового» давления на дно во всех сосудах одинакова и равна весу жидкости в цилиндрическом сосуде. Объяснение этого парадокса заключено в том, что сила давления жидкости на наклонные стенки имеет вертикальную составляющую, которая направлена вниз в сужающемся к верху сосуде и направленную вверх в расширяющемся.

Пример 2

Задание. На рис.2 изображены два сообщающихся сосуда с жидкостью. Поперечное сечение одного из сосудов в $n\ $ раз меньше, чем второго. Сосуды закрыты поршнями. К малому поршню прикладывают силу $F_2.\ $Какой силой надо подействовать на большой поршень, чтобы система находилась в состоянии равновесия?

Решение. В задаче представлена схема гидравлического пресса, который работает на основе закона Паскаля. Давление, которое создает на жидкость первый поршень, равен:

Второй поршень оказывает на жидкость давление:

Если система находится в равновесии, $p_1$ и $p_2$ равны, запишем:

\[\frac{F_1}{S_1}=\frac{F_2}{S_2}\left(2.3\right).\]

Найдем модуль силы, приложенной к большому поршню:

Ответ. $F_1=nF_{2}$

Рассмотрим жидкость, которая находится в сосуде под поршнем (рис. 1), когда силы , действующие на свободную поверхность жидкости, значительно больше веса жидкости или жидкость находится в невесомости, т. е. можно считать, что на жидкость действуют только поверхностные силы, и весом жидкости можно пренебречь. Выделим мысленно какой-то малый цилиндрический произвольно ориентированный объем жидкости. На основания этого объема жидкости действуют силы давления и остальной жидкости, на боковую поверхность - силы давления и . Условие равновесия выделенного в жидкости малого объема:

В проекции на ось Ox :

т.е. давление во всех точках невесомой неподвижной жидкости одинаково.

При изменении поверхностной силы будут изменяться величины p 1 и p 2 , но их равенство будет сохраняться. Это впервые установил Б.Паскаль.

Закон Паскаля : жидкость (газ) передает производимое на нее поверх постными силами внешнее давление по всем направлениям без изменения .

Давление, производимое на жидкость или газ, передается не только в направлении действия силы, но и в каждую точку жидкости (газа) благодаря подвижности молекул жидкости (газа).

Данный закон является прямым следствием отсутствия сил трения покоя в жидкостях и газах.

Закон Паскаля неприменим в случае движущейся жидкости (газа), а также в случае, когда жидкость (газ) находится в гравитационном поле; так, известно, что атмосферное и гидростатическое давление уменьшается с высотой

Закон Архимеда : на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа)(называемая силой Архимеда )

F A = ρgV ,

где ρ - плотность жидкости (газа), g - ускорение свободного падения, а V - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

В отсутствии силы тяжести, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами.

Условие плавания тел

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести и силы Архимеда , которые действуют на это тело. Возможны следующие три случая:

Тело тонет;

Тело плавает в жидкости или газе;

Тело всплывает до тех пор, пока не начнет плавать.

Другая формулировка (где - плотность тела, - плотность среды, в которую оно погружено):

· - тело тонет;

· - тело плавает в жидкости или газе;

· - тело всплывает до тех пор, пока не начнет плавать.

Уравнение Бернулли.

Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости: , здесь - плотность жидкости, - скорость потока, - высота, на которой находится рассматриваемый элемент жидкости, - давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, - ускорение свободного падения. Константа в правой части обычно называется напором , или полным давлением, а также интегралом Бернулли . Размерность всех слагаемых - единица энергии, приходящейся на единицу объёма жидкости.

Согласно закону Бернулли полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока. Полное давление состоит из весового (ρgh ), статического (p ) и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела почти всегда в точности равна нулю (кроме случаев отрыва струй при некоторых редких условиях). Закон Бернулли можно применить к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда.

Для сжимаемого идеального газа , (постоянна вдоль линии тока или линии вихря) где - Адиабатическая постоянная газа, p - давление газа в точке, ρ - плотность газа в точке, v - скорость течения газа, g - ускорение свободного падения, h - высота относительно начала координат. При движении в неоднородном поле gh заменяется на потенциал гравитационного поля.

Этот закон был открыт французским ученым Б. Паскалем в 1653 г. Его иногда называют основным законом .

Закон Паскаля можно объяснить с точки зрения молекулярного строения вещества. В твердых телах молекулы образуют кристаллическую решетку и колеблются около своих . В жидкостях и газах молекулы обладают относительной свободой, они могут перемещаться друг относительно друга. Именно эта особенность позволяет давление, производимое на жидкость (или газ) передавать не только в направлении действия силы, но и во всех направлениях.

Закон Паскаля нашел широкое применение в современной технике. На законе Паскаля основана работа современных суперпрессов, которые позволяют создавать давления порядка 800 МПа. Также на этом законе построена работа всей гидроавтоматики, управляющей космическими кораблями, реактивными авиалайнерами, станками с числовым программным управлением, экскаваторами, самосвалами и т.д.

Гидростатическое давление жидкости

Гидростатическое давление внутри жидкости на любой глубине не зависит от формы сосуда, в котором находится жидкость, и равно произведению жидкости, и глубины, на которой определяется давление:

В однородной покоящейся жидкости давления в точках, лежащих в одной горизонтальной плоскости (на одном уровне), одинаковы. Во всех случаях, приведенных на рис. 1, давление жидкости на дно сосудов одинаково.

Рис.1. Независимость гидростатического давления от формы сосуда

На данной глубине жидкость давит одинаково по всем направлениям, поэтому давление на стенку на данной глубине будет таким же, как и на горизонтальную площадку, расположенную на такой же глубине.

Полное давление в жидкости, налитой в сосуд, складывается из давления у поверхности жидкости и гидростатического давления:

Давление у поверхности жидкости часто равно атмосферному давлению.

Примеры решения задач

ПРИМЕР 1

Задание В полый куб с ребром 40 см налита вода. Найти силу давления воды на дно и стенки куба.
Решение Выполним рисунок.

1) Гидростатическое давление на глубине

Сила давления воды на дно куба:

где - площадь дна; ,

2) Среднее давление на боковую грань равно полусумме давлений на уровне поверхности и на уровне дна:

сила давления на стенку куба:

Из таблиц плотность воды кг/м.

Переведем единицы в систему СИ: длина ребра куба см м.

Вычислим:

1) сила давления на дно:

2) сила давления на стенку:

Ответ Силы давления воды на дно и стенки куба 627 и 314 Н соответственно.

ПРИМЕР 2

Задание В два колена U-образной трубки налиты вода и масло, разделенные ртутью. Поверхности раздела ртути и жидкостей в обоих коленах находятся на одной высоте. Определить высоту столба воды, если высота столба масла 20 см.
Решение Выполним рисунок.

По закону Паскаля давление в обоих коленах трубки на уровне одинаково:

Давление воды на уровне

давление масла на уровне

Подставив выражения для давлений жидкостей в первое равенство, получим: